{"title":"Enhancing the mechanical properties and corrosion resistance of biomedical Ti15Mo alloy with ultra-finer {332} twins via cyclic deformation","authors":"","doi":"10.1016/j.jallcom.2024.176578","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical properties, passivation behaviors and corrosion resistance of biomedical Ti15Mo alloy with ultra-finer twins were investigated. Cyclic deformation was conducted to activating more {332} twin variants via periodic changes of tension and compression. Microstructural refinement via numerous twins with the stable boundaries is different from other mechanisms, resulting in a higher hardness and maintaining the low elastic modulus after deformation and annealing. The results of electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy tests, revealed that twin boundaries are beneficial to enhancing passivation behaviors via forming a thicker oxide film in PBS solution. The alloy with ultra-finer {332} twins exhibit a better corrosion resistance due to a lower passivation current. The expected biomedical performance was obtained in the alloy after ±3 % amplitude cyclic deformation and 730 °C/7 min annealing, in contrast to the initial alloy with coarse grains, increasing 8.8 % of the hardness, decreasing 46 % of the corrosion current and maintaining the low elastic modulus.</p></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838824031657","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical properties, passivation behaviors and corrosion resistance of biomedical Ti15Mo alloy with ultra-finer twins were investigated. Cyclic deformation was conducted to activating more {332} twin variants via periodic changes of tension and compression. Microstructural refinement via numerous twins with the stable boundaries is different from other mechanisms, resulting in a higher hardness and maintaining the low elastic modulus after deformation and annealing. The results of electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy tests, revealed that twin boundaries are beneficial to enhancing passivation behaviors via forming a thicker oxide film in PBS solution. The alloy with ultra-finer {332} twins exhibit a better corrosion resistance due to a lower passivation current. The expected biomedical performance was obtained in the alloy after ±3 % amplitude cyclic deformation and 730 °C/7 min annealing, in contrast to the initial alloy with coarse grains, increasing 8.8 % of the hardness, decreasing 46 % of the corrosion current and maintaining the low elastic modulus.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.