Tailoring hydrophobicity and strength in spider silk-inspired coatings via thermal treatments

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Computational and structural biotechnology journal Pub Date : 2024-09-16 DOI:10.1016/j.csbj.2024.09.009
{"title":"Tailoring hydrophobicity and strength in spider silk-inspired coatings via thermal treatments","authors":"","doi":"10.1016/j.csbj.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of advanced coatings has transformed material functionalities, extending their roles from basic coverage and visual appeal to include unique properties such as self-healing, superior hydrophobicity, and antimicrobial action. However, the traditional dependency on petrochemical-derived materials for these coatings raises environmental concerns. This study proposes the use of renewable and alternative materials for coating development. We present the use of bioengineered spider silk-inspired protein (SSIP), produced through recombinant technology, as a viable, eco-friendly alternative due to their ease of processing under ambient pressure and the utilization of water as a solvent, alongside their exceptional physicochemical properties. Our research investigates the effects of different thermal treatments and protein concentrations on the mechanical strength and surface water repellency of coatings on silica bases. Our findings reveal a direct correlation between the temperature of heat treatment and the enhancements in surface hydrophobicity and mechanical strength, where elevated temperatures facilitate increased resistance to water and improved mechanical integrity. Consequently, we advocate SSIPs present a promising, sustainable choice for advanced coatings, providing a pathway to fine-tune coating recipes for better mechanical and hydrophobic properties with a reduced ecological footprint, finding potential uses in various fields such as electronics.</p></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2001037024002976/pdfft?md5=e578139e728a4a4cd27b5e029c98b8b7&pid=1-s2.0-S2001037024002976-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024002976","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of advanced coatings has transformed material functionalities, extending their roles from basic coverage and visual appeal to include unique properties such as self-healing, superior hydrophobicity, and antimicrobial action. However, the traditional dependency on petrochemical-derived materials for these coatings raises environmental concerns. This study proposes the use of renewable and alternative materials for coating development. We present the use of bioengineered spider silk-inspired protein (SSIP), produced through recombinant technology, as a viable, eco-friendly alternative due to their ease of processing under ambient pressure and the utilization of water as a solvent, alongside their exceptional physicochemical properties. Our research investigates the effects of different thermal treatments and protein concentrations on the mechanical strength and surface water repellency of coatings on silica bases. Our findings reveal a direct correlation between the temperature of heat treatment and the enhancements in surface hydrophobicity and mechanical strength, where elevated temperatures facilitate increased resistance to water and improved mechanical integrity. Consequently, we advocate SSIPs present a promising, sustainable choice for advanced coatings, providing a pathway to fine-tune coating recipes for better mechanical and hydrophobic properties with a reduced ecological footprint, finding potential uses in various fields such as electronics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过热处理定制蜘蛛丝启发涂层的疏水性和强度
先进涂料的出现改变了材料的功能,使其作用从基本的遮盖和视觉效果扩展到自修复、优异的疏水性和抗菌作用等独特性能。然而,这些涂料传统上依赖石化衍生材料,这引发了环境问题。本研究建议使用可再生替代材料进行涂料开发。我们提出使用通过重组技术生产的生物工程蜘蛛丝启发蛋白(SSIP)作为一种可行的生态友好型替代材料,因为这种材料易于在环境压力下加工,可以利用水作为溶剂,同时还具有优异的物理化学特性。我们的研究调查了不同热处理和蛋白质浓度对硅基涂层机械强度和表面憎水性的影响。我们的研究结果表明,热处理的温度与表面疏水性和机械强度的提高直接相关,温度升高有利于提高抗水性和机械完整性。因此,我们认为 SSIPs 是一种前景广阔、可持续发展的先进涂层选择,为微调涂层配方以获得更好的机械和疏水性能提供了途径,同时减少了生态足迹,在电子等各个领域都有潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
期刊最新文献
Tailoring hydrophobicity and strength in spider silk-inspired coatings via thermal treatments Identification of genetic basis of brain imaging by group sparse multi-task learning leveraging summary statistics VICTOR: Validation and inspection of cell type annotation through optimal regression Magnetic control of soft microrobots near step-out frequency: Characterization and analysis Privacy-preserving decentralized learning methods for biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1