ZeroVCS: An efficient authentication protocol without trusted authority for zero-trust vehicular communication systems

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Future Generation Computer Systems-The International Journal of Escience Pub Date : 2024-09-11 DOI:10.1016/j.future.2024.107520
{"title":"ZeroVCS: An efficient authentication protocol without trusted authority for zero-trust vehicular communication systems","authors":"","doi":"10.1016/j.future.2024.107520","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicular communication systems can provide two types of communications: Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V). However, in both cases, there is zero-trust between the communicating entities. This may give privilege to the unauthorized vehicles to join the network. Hence, a strong authentication protocol is required to ensure proper access control and communication security. In traditional protocols, such tasks are typically accomplished via a central Trusted Authority (TA). However, communication with TA may increase the overall authentication delay. Such delay may be incompatible with the future generation vehicular communication systems, where dense deployment of small-cells are required to ensure higher system capacity and seamless mobility (e.g., 5G onward). Further, TA may suffer from denial-of-service when the number of access requests becomes excessively large, because each request must be forwarded to TA for authentication and access control. In this article, we put forward an efficient authentication protocol without trusted authority for zero-trust vehicular communication systems, called ZeroVCS. It does not involve TA for authentication and access control, thus improving the authentication delay, reducing the chance of denial-of-service, and ensuring compatibility with the future generation vehicular communication systems. ZeroVCS can also provide communication security under various passive and active attacks. Finally, the performance-based comparison proves the efficiency of ZeroVCS.</p></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24004849","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular communication systems can provide two types of communications: Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V). However, in both cases, there is zero-trust between the communicating entities. This may give privilege to the unauthorized vehicles to join the network. Hence, a strong authentication protocol is required to ensure proper access control and communication security. In traditional protocols, such tasks are typically accomplished via a central Trusted Authority (TA). However, communication with TA may increase the overall authentication delay. Such delay may be incompatible with the future generation vehicular communication systems, where dense deployment of small-cells are required to ensure higher system capacity and seamless mobility (e.g., 5G onward). Further, TA may suffer from denial-of-service when the number of access requests becomes excessively large, because each request must be forwarded to TA for authentication and access control. In this article, we put forward an efficient authentication protocol without trusted authority for zero-trust vehicular communication systems, called ZeroVCS. It does not involve TA for authentication and access control, thus improving the authentication delay, reducing the chance of denial-of-service, and ensuring compatibility with the future generation vehicular communication systems. ZeroVCS can also provide communication security under various passive and active attacks. Finally, the performance-based comparison proves the efficiency of ZeroVCS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZeroVCS:零信任车载通信系统的高效无信任机构认证协议
车载通信系统可提供两种类型的通信:车对基础设施(V2I)和车对车(V2V)。然而,在这两种情况下,通信实体之间都是零信任。这可能会给未经授权的车辆提供加入网络的特权。因此,需要一个强大的认证协议来确保适当的访问控制和通信安全。在传统协议中,这些任务通常通过一个中央可信机构(TA)来完成。然而,与 TA 的通信可能会增加整体认证延迟。这种延迟可能与下一代车载通信系统不兼容,因为下一代车载通信系统需要密集部署小蜂窝,以确保更高的系统容量和无缝移动性(如 5G 以后)。此外,由于每个请求都必须转发给 TA 进行身份验证和访问控制,因此当接入请求数量过多时,TA 可能会出现拒绝服务的问题。在本文中,我们为零信任车载通信系统提出了一种无需信任机构的高效认证协议,称为 ZeroVCS。它不涉及 TA 的认证和访问控制,从而改善了认证延迟,减少了拒绝服务的机会,并确保了与下一代车载通信系统的兼容性。ZeroVCS 还能在各种被动和主动攻击下保证通信安全。最后,基于性能的比较证明了 ZeroVCS 的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
期刊最新文献
Analyzing inference workloads for spatiotemporal modeling An efficient federated learning solution for the artificial intelligence of things Generative adversarial networks to detect intrusion and anomaly in IP flow-based networks Blockchain-based conditional privacy-preserving authentication scheme using PUF for vehicular ad hoc networks UAV-IRS-assisted energy harvesting for edge computing based on deep reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1