Guangjun Ji , Zizhao Cai , Yan Lu , Jixiang Zhu , Keyan Xiao , Li Sun
{"title":"Study on exploring the extraction of geological elements from 3D geological models within the constraints of geological knowledge","authors":"Guangjun Ji , Zizhao Cai , Yan Lu , Jixiang Zhu , Keyan Xiao , Li Sun","doi":"10.1016/j.cageo.2024.105726","DOIUrl":null,"url":null,"abstract":"<div><p>During the process of visualization, format exchange, and spatial analysis, the 3D geological model tends to emphasize its geometric features, thereby diminishing its geological significance to some extent. However, extracting corresponding geological elements directly from the model based solely on the pure geometric features of geologic bodies proves to be difficult and few studies have focused on related problems. This research aims to extract geological elements from existing geological models under the constraints of geological knowledge to enhance the reusability of existing models and the efficacy of their applications in subsequent research. Firstly, each stratum is assigned its geological significance under the constraints of geological knowledge. Then, the study introduces extraction methods for the topographic interface, eroded interface, stratigraphic top and bottom interfaces, and various constraint boundaries. Furthermore, the potential importance of the studies presented in this paper and their application scenarios are analyzed and explored. Finally, the feasibility and effectiveness of the method for extracting geological elements are validated through a case study. This method holds significant scientific importance for efficiently updating and conducting fine application analyses of geological models. Additionally, this research provides valuable insights that enhance the efficiency of model updating, property model construction, and the splicing of block models across extensive areas.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105726"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002097","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
During the process of visualization, format exchange, and spatial analysis, the 3D geological model tends to emphasize its geometric features, thereby diminishing its geological significance to some extent. However, extracting corresponding geological elements directly from the model based solely on the pure geometric features of geologic bodies proves to be difficult and few studies have focused on related problems. This research aims to extract geological elements from existing geological models under the constraints of geological knowledge to enhance the reusability of existing models and the efficacy of their applications in subsequent research. Firstly, each stratum is assigned its geological significance under the constraints of geological knowledge. Then, the study introduces extraction methods for the topographic interface, eroded interface, stratigraphic top and bottom interfaces, and various constraint boundaries. Furthermore, the potential importance of the studies presented in this paper and their application scenarios are analyzed and explored. Finally, the feasibility and effectiveness of the method for extracting geological elements are validated through a case study. This method holds significant scientific importance for efficiently updating and conducting fine application analyses of geological models. Additionally, this research provides valuable insights that enhance the efficiency of model updating, property model construction, and the splicing of block models across extensive areas.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.