{"title":"Asynchronous approximate Byzantine consensus: A multi-hop relay method and tight graph conditions","authors":"Liwei Yuan , Hideaki Ishii","doi":"10.1016/j.automatica.2024.111908","DOIUrl":null,"url":null,"abstract":"<div><p>We study a multi-agent resilient consensus problem, where some agents are of the Byzantine type and try to prevent the normal ones from reaching consensus. In our setting, normal agents communicate with each other asynchronously over multi-hop relay channels with delays. To solve this asynchronous Byzantine consensus problem, we develop the multi-hop weighted mean subsequence reduced (MW-MSR) algorithm. The main contribution is that we characterize a tight graph condition for our algorithm to achieve Byzantine consensus, which is expressed in the novel notion of strictly robust graphs. We show that the multi-hop communication is effective for enhancing the network’s resilience against Byzantine agents. As a result, we also obtain novel conditions for resilient consensus under the malicious attack model, which are tighter than those known in the literature. Furthermore, the proposed algorithm can be viewed as a generalization of the conventional flooding-based algorithms, with less computational complexity. Lastly, we provide numerical examples to show the effectiveness of the proposed algorithm.</p></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111908"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0005109824004023/pdfft?md5=4ef54f80a2e094e0b844d771ed36118c&pid=1-s2.0-S0005109824004023-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004023","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a multi-agent resilient consensus problem, where some agents are of the Byzantine type and try to prevent the normal ones from reaching consensus. In our setting, normal agents communicate with each other asynchronously over multi-hop relay channels with delays. To solve this asynchronous Byzantine consensus problem, we develop the multi-hop weighted mean subsequence reduced (MW-MSR) algorithm. The main contribution is that we characterize a tight graph condition for our algorithm to achieve Byzantine consensus, which is expressed in the novel notion of strictly robust graphs. We show that the multi-hop communication is effective for enhancing the network’s resilience against Byzantine agents. As a result, we also obtain novel conditions for resilient consensus under the malicious attack model, which are tighter than those known in the literature. Furthermore, the proposed algorithm can be viewed as a generalization of the conventional flooding-based algorithms, with less computational complexity. Lastly, we provide numerical examples to show the effectiveness of the proposed algorithm.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.