Explainable rotation-invariant self-supervised representation learning

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-09-14 DOI:10.1016/j.mex.2024.102959
{"title":"Explainable rotation-invariant self-supervised representation learning","authors":"","doi":"10.1016/j.mex.2024.102959","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes a method that can perform robust detection and classification in out-of-distribution rotated images in the medical domain. In real-world medical imaging tools, noise due to the rotation of the body part is frequently observed. This noise reduces the accuracy of AI-based classification and prediction models. Hence, it is important to develop models which are rotation invariant. To that end, the proposed method - RISC (rotation invariant self-supervised vision framework) addresses this issue of rotational corruption. We present state-of-the-art rotation-invariant classification results and provide explainability for the performance in the domain. The evaluation of the proposed method is carried out on real-world adversarial examples in Medical Imagery-OrganAMNIST, RetinaMNIST and PneumoniaMNIST. It is observed that RISC outperforms the rotation-affected benchmark methods by obtaining 22\\%, 17\\% and 2\\% accuracy boost on OrganAMNIST, PneumoniaMNIST and RetinaMNIST rotated baselines respectively. Further, explainability results are demonstrated.</p><p>This methods paper describes:</p><ul><li><span>•</span><span><p>a representation learning approach that can perform robust detection and classification in out-of-distribution rotated images in the medical domain.</p></span></li><li><span>•</span><span><p>It presents a method that incorporates self-supervised rotation invariance for correcting rotational corruptions.</p></span></li><li><span>•</span><span><p>GradCAM-based explainability for the rotational SSL pretext task and the downstream classification outcomes for the three benchmark datasets are presented</p></span></li></ul></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215016124004102/pdfft?md5=960ede7733b4b76435ee298fd9a1d9b1&pid=1-s2.0-S2215016124004102-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124004102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a method that can perform robust detection and classification in out-of-distribution rotated images in the medical domain. In real-world medical imaging tools, noise due to the rotation of the body part is frequently observed. This noise reduces the accuracy of AI-based classification and prediction models. Hence, it is important to develop models which are rotation invariant. To that end, the proposed method - RISC (rotation invariant self-supervised vision framework) addresses this issue of rotational corruption. We present state-of-the-art rotation-invariant classification results and provide explainability for the performance in the domain. The evaluation of the proposed method is carried out on real-world adversarial examples in Medical Imagery-OrganAMNIST, RetinaMNIST and PneumoniaMNIST. It is observed that RISC outperforms the rotation-affected benchmark methods by obtaining 22\%, 17\% and 2\% accuracy boost on OrganAMNIST, PneumoniaMNIST and RetinaMNIST rotated baselines respectively. Further, explainability results are demonstrated.

This methods paper describes:

  • a representation learning approach that can perform robust detection and classification in out-of-distribution rotated images in the medical domain.

  • It presents a method that incorporates self-supervised rotation invariance for correcting rotational corruptions.

  • GradCAM-based explainability for the rotational SSL pretext task and the downstream classification outcomes for the three benchmark datasets are presented

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可解释的旋转不变自监督表征学习
本文介绍了一种能在医疗领域对分布不均的旋转图像进行稳健检测和分类的方法。在现实世界的医疗成像工具中,经常会观察到由于身体部位旋转而产生的噪声。这种噪声会降低基于人工智能的分类和预测模型的准确性。因此,开发具有旋转不变性的模型非常重要。为此,我们提出了一种方法--RISC(旋转不变自监督视觉框架)来解决旋转损坏问题。我们展示了最先进的旋转不变分类结果,并提供了该领域性能的可解释性。我们在医学影像-器官-AMNIST、视网膜-MNIST 和肺炎-MNIST 中的真实世界对抗实例上对所提出的方法进行了评估。结果表明,RISC优于受旋转影响的基准方法,在OrganAMNIST、PneumoniaMNIST和RetinaMNIST旋转基线上分别提高了22%、17%和2%的准确率。本方法论文描述了:-一种表征学习方法,可在医疗领域的分布外旋转图像中执行稳健的检测和分类;-提出了一种方法,该方法结合了自监督旋转不变性来纠正旋转损坏;-介绍了基于GradCAM的旋转SSL借口任务的可解释性以及三个基准数据集的下游分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊最新文献
ViT-HHO: Optimized vision transformer for diabetic retinopathy detection using Harris Hawk optimization Standardized lab-scale production of the recombinant fusion protein HUG for the nanoscale analysis of bilirubin The TOPSIS method: Figuring the landslide susceptibility using Excel and GIS A method to improve binary forecast skill verification Automated prediction of phosphorus concentration in soils using reflectance spectroscopy and machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1