A fourth order Runge-Kutta type of exponential time differencing and triangular spectral element method for two dimensional nonlinear Maxwell's equations

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Applied Numerical Mathematics Pub Date : 2024-09-11 DOI:10.1016/j.apnum.2024.09.008
{"title":"A fourth order Runge-Kutta type of exponential time differencing and triangular spectral element method for two dimensional nonlinear Maxwell's equations","authors":"","doi":"10.1016/j.apnum.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a numerical scheme to solve the nonlinear Maxwell's equations. The discrete scheme is based on the triangular spectral element method (TSEM) in space and the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method in time. TSEM has the advantages of spectral accuracy and geometric flexibility. The ETD method involves exact integration of the linear part of the governing equation followed by an approximation of an integral involving the nonlinear terms. The RK4 scheme is introduced for the time integration of the nonlinear terms. The stability region of the ETDRK4 method is depicted. Moreover, the contour integral in the complex plan is utilized and improved to compute the matrix function required by the implementation of ETDRK4. The numerical results demonstrate that our proposed method is of exponential convergence with the order of basis function in space and fourth order accuracy in time.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002447","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a numerical scheme to solve the nonlinear Maxwell's equations. The discrete scheme is based on the triangular spectral element method (TSEM) in space and the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method in time. TSEM has the advantages of spectral accuracy and geometric flexibility. The ETD method involves exact integration of the linear part of the governing equation followed by an approximation of an integral involving the nonlinear terms. The RK4 scheme is introduced for the time integration of the nonlinear terms. The stability region of the ETDRK4 method is depicted. Moreover, the contour integral in the complex plan is utilized and improved to compute the matrix function required by the implementation of ETDRK4. The numerical results demonstrate that our proposed method is of exponential convergence with the order of basis function in space and fourth order accuracy in time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对二维非线性麦克斯韦方程的四阶 Runge-Kutta 指数时差和三角谱元法
本文研究了一种求解非线性麦克斯韦方程的数值方案。该离散方案在空间上基于三角谱元法(TSEM),在时间上基于指数时差四阶 Runge-Kutta 法(ETDRK4)。TSEM 具有频谱精确性和几何灵活性的优点。ETD 方法包括对控制方程的线性部分进行精确积分,然后对涉及非线性项的积分进行近似。非线性项的时间积分采用 RK4 方案。描述了 ETDRK4 方法的稳定区域。此外,还利用并改进了复平面内的等高线积分,以计算 ETDRK4 实现所需的矩阵函数。数值结果表明,我们提出的方法在空间上与基函数阶数呈指数收敛,在时间上具有四阶精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
期刊最新文献
A uniformly convergent analysis for multiple scale parabolic singularly perturbed convection-diffusion coupled systems: Optimal accuracy with less computational time Stability analysis and error estimates of implicit-explicit Runge-Kutta least squares RBF-FD method for time-dependent parabolic equation A weak Galerkin finite element method for fourth-order parabolic singularly perturbed problems on layer adapted Shishkin mesh Supercloseness of the NIPG method on a Bakhvalov-type mesh for a singularly perturbed problem with two small parameters Weak Galerkin finite element method with the total pressure variable for Biot's consolidation model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1