Robust quadruped jumping via deep reinforcement learning

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Robotics and Autonomous Systems Pub Date : 2024-09-04 DOI:10.1016/j.robot.2024.104799
Guillaume Bellegarda , Chuong Nguyen , Quan Nguyen
{"title":"Robust quadruped jumping via deep reinforcement learning","authors":"Guillaume Bellegarda ,&nbsp;Chuong Nguyen ,&nbsp;Quan Nguyen","doi":"10.1016/j.robot.2024.104799","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a general task of jumping varying distances and heights for a quadrupedal robot in noisy environments, such as off of uneven terrain and with variable robot dynamics parameters. To accurately jump in such conditions, we propose a framework using deep reinforcement learning that leverages and augments the complex solution of nonlinear trajectory optimization for quadrupedal jumping. While the standalone optimization limits jumping to take-off from flat ground and requires accurate assumptions of robot dynamics, our proposed approach improves the robustness to allow jumping off of significantly uneven terrain with variable robot dynamical parameters and environmental conditions. Compared with walking and running, the realization of aggressive jumping on hardware necessitates accounting for the motors’ torque-speed relationship as well as the robot’s total power limits. By incorporating these constraints into our learning framework, we successfully deploy our policy sim-to-real without further tuning, fully exploiting the available onboard power supply and motors. We demonstrate robustness to environment noise of foot disturbances of up to 6 cm in height, or 33% of the robot’s nominal standing height, while jumping 2<em>x</em> the body length in distance.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104799"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921889024001830/pdfft?md5=120dc8f6d5e39f92c0fe9b96f499ae52&pid=1-s2.0-S0921889024001830-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024001830","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a general task of jumping varying distances and heights for a quadrupedal robot in noisy environments, such as off of uneven terrain and with variable robot dynamics parameters. To accurately jump in such conditions, we propose a framework using deep reinforcement learning that leverages and augments the complex solution of nonlinear trajectory optimization for quadrupedal jumping. While the standalone optimization limits jumping to take-off from flat ground and requires accurate assumptions of robot dynamics, our proposed approach improves the robustness to allow jumping off of significantly uneven terrain with variable robot dynamical parameters and environmental conditions. Compared with walking and running, the realization of aggressive jumping on hardware necessitates accounting for the motors’ torque-speed relationship as well as the robot’s total power limits. By incorporating these constraints into our learning framework, we successfully deploy our policy sim-to-real without further tuning, fully exploiting the available onboard power supply and motors. We demonstrate robustness to environment noise of foot disturbances of up to 6 cm in height, or 33% of the robot’s nominal standing height, while jumping 2x the body length in distance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度强化学习实现稳健的四足跳跃
在本文中,我们考虑了四足机器人在嘈杂环境中跳跃不同距离和高度的一般任务,例如在不平坦的地形上,以及在机器人动态参数可变的情况下。为了在这种条件下准确跳跃,我们提出了一个使用深度强化学习的框架,该框架利用并增强了四足跳跃非线性轨迹优化的复杂解决方案。独立的优化方法将跳跃限制在从平地起飞,并且需要对机器人动力学进行精确假设,而我们提出的方法提高了鲁棒性,允许在机器人动力学参数和环境条件可变的情况下,从明显不平的地形上跳下。与行走和跑步相比,在硬件上实现积极跳跃需要考虑电机的扭矩-速度关系以及机器人的总功率限制。通过将这些限制纳入我们的学习框架,我们成功地将策略模拟到现实中,无需进一步调整,充分利用了可用的板载电源和电机。我们证明了机器人在跳跃距离为身体长度的 2 倍时,对高度达 6 厘米(即机器人标称站立高度的 33%)的脚部干扰环境噪音的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
期刊最新文献
Editorial Board A sensorless approach for cable failure detection and identification in cable-driven parallel robots Learning latent causal factors from the intricate sensor feedback of contact-rich robotic assembly tasks GPS-free autonomous navigation in cluttered tree rows with deep semantic segmentation Robust trajectory tracking for omnidirectional robots by means of anti-peaking linear active disturbance rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1