Allisandra K. Rha , Chloe L. Christensen , Shih-Hsin Kan , Jerry F. Harb , Perla Andrade-Heckman , Raymond Y. Wang
{"title":"Generation of an infantile GM1 gangliosidosis induced pluripotent stem cell line (CHOCi005-A) for disease modeling and therapeutic testing","authors":"Allisandra K. Rha , Chloe L. Christensen , Shih-Hsin Kan , Jerry F. Harb , Perla Andrade-Heckman , Raymond Y. Wang","doi":"10.1016/j.scr.2024.103552","DOIUrl":null,"url":null,"abstract":"<div><p>GM1 gangliosidosis (GM1) is a rare autosomal recessive neurogenerative lysosomal storage disease characterized by deficiency of beta-galactosidase (β-gal) and intralysosomal accumulation of GM1 ganglioside and other glycoconjugates. Resources for GM1 disease modelling are limited, and access to relevant cell lines from human patients is not possible. Generation of iPSC lines from GM1 patient-derived dermal fibroblasts allows for disease modelling and therapeutic testing in 2D and 3D cell culture models relevant to CNS disorders, including various neuronal subtypes and cerebral organoids. The iPSC line described here will be critical to therapeutic development and set the foundation for translational gene therapy work.</p></div>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1873506124002502/pdfft?md5=e8f32eaa23aa83fafa6bb55b0def7370&pid=1-s2.0-S1873506124002502-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873506124002502","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
GM1 gangliosidosis (GM1) is a rare autosomal recessive neurogenerative lysosomal storage disease characterized by deficiency of beta-galactosidase (β-gal) and intralysosomal accumulation of GM1 ganglioside and other glycoconjugates. Resources for GM1 disease modelling are limited, and access to relevant cell lines from human patients is not possible. Generation of iPSC lines from GM1 patient-derived dermal fibroblasts allows for disease modelling and therapeutic testing in 2D and 3D cell culture models relevant to CNS disorders, including various neuronal subtypes and cerebral organoids. The iPSC line described here will be critical to therapeutic development and set the foundation for translational gene therapy work.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.