{"title":"An investigation of dynamic droplet wetting within the smoothed dissipative particle dynamics (SDPD) multi-scale modeling framework","authors":"Hantao Liu , Chao Li , Kaixing Ji","doi":"10.1016/j.enganabound.2024.105968","DOIUrl":null,"url":null,"abstract":"<div><p>The multi-scale numerical procedure proposed in our previous work based on smoothed dissipative particle dynamics (SDPD) is employed, and a new multi-phase interaction model based on the inter-particle force (IPF) that includes a consistent repulsion force is presented and verified. A comparative investigation utilizing smoothed particle hydrodynamics (SPH), SDPD, and our multi-scale methods is then carried out and the computational efficiency, droplet morphology, wetting flow field, and advantages of the multi-scale method are demonstrated. In addition, the droplet thickness is derived from the Navier–Stokes equations with a stochastic force, demonstrating the effect of thermal fluctuations on the mesoscopic scale. Finally, the wetting states are simulated at different surface roughness values, and the transition of states and some new mechanisms are clarified. When the roughness scale is smaller than the interaction range between particles, the wetting state may change significantly, and this effect becomes weaker when the roughness scale exceeds the interaction range. The results also show that the horizontal roughness (direction of droplet spreading) is more decisive than vertical one (perpendicular to the direction of droplet spreading), usually leading to a transition of the wetting states, while the vertical roughness usually plays a reinforcing role.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 105968"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004417","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The multi-scale numerical procedure proposed in our previous work based on smoothed dissipative particle dynamics (SDPD) is employed, and a new multi-phase interaction model based on the inter-particle force (IPF) that includes a consistent repulsion force is presented and verified. A comparative investigation utilizing smoothed particle hydrodynamics (SPH), SDPD, and our multi-scale methods is then carried out and the computational efficiency, droplet morphology, wetting flow field, and advantages of the multi-scale method are demonstrated. In addition, the droplet thickness is derived from the Navier–Stokes equations with a stochastic force, demonstrating the effect of thermal fluctuations on the mesoscopic scale. Finally, the wetting states are simulated at different surface roughness values, and the transition of states and some new mechanisms are clarified. When the roughness scale is smaller than the interaction range between particles, the wetting state may change significantly, and this effect becomes weaker when the roughness scale exceeds the interaction range. The results also show that the horizontal roughness (direction of droplet spreading) is more decisive than vertical one (perpendicular to the direction of droplet spreading), usually leading to a transition of the wetting states, while the vertical roughness usually plays a reinforcing role.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.