{"title":"A coarse-grained approach to modeling gas transport in swelling porous media","authors":"","doi":"10.1016/j.ijrmms.2024.105918","DOIUrl":null,"url":null,"abstract":"<div><p>In many engineering applications, understanding gas adsorption and its induced swelling in nanoporous materials is crucial. In this study, we propose a novel coarse-grained molecular dynamics (CGMD) model with gas-gas, solid-solid, and gas-solid interactions explicitly controlled to achieve the coupling between gas transport and solid deformation at the microscale. The CGMD model has the capability to recover solid and gas properties, including density, Young's modulus of the solid, and viscosity of the gas to generate a broad range of swelling ratios relevant to nanostructures by using the innovative bead-spring chain networks. A comparison is made between gas transport through deformable and non-deformable nanochannels of varying sizes (35.4–123.9 nm), which is also compared with the macroscopic Hagen-Poiseuille equation. The proposed model has been further tested in a simplified nanoporous medium composed of four randomly distributed spherical solids. The Kozeny-Carman equation can generally describe the relationship between permeability and porosity, but small deviations are observed in the case of swelling porous media. Our results justify the effect of swelling on reducing gas permeability and provide a new approach to modeling gas transport in swelling porous media at the microscale within the framework of CGMD, with potential applications spanning nanofluidics, energy storage technologies, and environmental nanotechnology.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1365160924002831/pdfft?md5=ac3e93c6ff2eb6649e72cac29cd44033&pid=1-s2.0-S1365160924002831-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002831","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In many engineering applications, understanding gas adsorption and its induced swelling in nanoporous materials is crucial. In this study, we propose a novel coarse-grained molecular dynamics (CGMD) model with gas-gas, solid-solid, and gas-solid interactions explicitly controlled to achieve the coupling between gas transport and solid deformation at the microscale. The CGMD model has the capability to recover solid and gas properties, including density, Young's modulus of the solid, and viscosity of the gas to generate a broad range of swelling ratios relevant to nanostructures by using the innovative bead-spring chain networks. A comparison is made between gas transport through deformable and non-deformable nanochannels of varying sizes (35.4–123.9 nm), which is also compared with the macroscopic Hagen-Poiseuille equation. The proposed model has been further tested in a simplified nanoporous medium composed of four randomly distributed spherical solids. The Kozeny-Carman equation can generally describe the relationship between permeability and porosity, but small deviations are observed in the case of swelling porous media. Our results justify the effect of swelling on reducing gas permeability and provide a new approach to modeling gas transport in swelling porous media at the microscale within the framework of CGMD, with potential applications spanning nanofluidics, energy storage technologies, and environmental nanotechnology.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.