Yayun Pang , Long Tao , Ziyang Wang , Chenglei Xiao , Kaili Wang , Kongqian Liang , Jinliang Song , Tiejun Wang
{"title":"Atomically dispersed Zn sites on N-doped carbon boosted transesterification of symmetrical organic carbonates with biomass-derived alcohols","authors":"Yayun Pang , Long Tao , Ziyang Wang , Chenglei Xiao , Kaili Wang , Kongqian Liang , Jinliang Song , Tiejun Wang","doi":"10.1016/j.jcat.2024.115763","DOIUrl":null,"url":null,"abstract":"<div><p>Transesterification of symmetrical organic carbonates with alcohols to access the unsymmetrical ones is a highly attractive strategy for upgrading biomass-derived alcohols. Robust, facile-prepared, and cost-effective catalytic materials remain highly desirable for this route. Herein, we designed several Zn-based catalysts (denoted as Zn@C-T, where T represented the pyrolysis temperature) by the pyrolysis of Zn-based coordination polymer at different temperatures. Very interestingly, the prepared Zn@C-900 could efficiently catalyze the transesterification of diethyl carbonate (DEC) with various biomass-derived alcohols to synthesize the corresponding unsymmetrical organic carbonates with high yields (>95 %), resulting from the atomically dispersed ZnN<sub>x</sub> sites on the N-doped carbon. Notably, good catalytic activity could be obtained at a low temperature of 80 °C, representing the major breakthrough. Detailed investigations indicated that the excellent performance of Zn@C-900 originated mainly from the synergistic effect of Zn (to activate DEC) and N (to activate the alcohols) in the ZnN<sub>x</sub> sites. This work provided a promising efficient catalyst for low-temperature production of unsymmetrical organic carbonates <em>via</em> transesterification of DEC.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"439 ","pages":"Article 115763"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724004767","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transesterification of symmetrical organic carbonates with alcohols to access the unsymmetrical ones is a highly attractive strategy for upgrading biomass-derived alcohols. Robust, facile-prepared, and cost-effective catalytic materials remain highly desirable for this route. Herein, we designed several Zn-based catalysts (denoted as Zn@C-T, where T represented the pyrolysis temperature) by the pyrolysis of Zn-based coordination polymer at different temperatures. Very interestingly, the prepared Zn@C-900 could efficiently catalyze the transesterification of diethyl carbonate (DEC) with various biomass-derived alcohols to synthesize the corresponding unsymmetrical organic carbonates with high yields (>95 %), resulting from the atomically dispersed ZnNx sites on the N-doped carbon. Notably, good catalytic activity could be obtained at a low temperature of 80 °C, representing the major breakthrough. Detailed investigations indicated that the excellent performance of Zn@C-900 originated mainly from the synergistic effect of Zn (to activate DEC) and N (to activate the alcohols) in the ZnNx sites. This work provided a promising efficient catalyst for low-temperature production of unsymmetrical organic carbonates via transesterification of DEC.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.