MFFGD: An adaptive Caputo fractional-order gradient algorithm for DNN

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-09-13 DOI:10.1016/j.neucom.2024.128606
{"title":"MFFGD: An adaptive Caputo fractional-order gradient algorithm for DNN","authors":"","doi":"10.1016/j.neucom.2024.128606","DOIUrl":null,"url":null,"abstract":"<div><p>As a primary optimization method for neural networks, gradient descent algorithm has received significant attention in the recent development of deep neural networks. However, current gradient descent algorithms still suffer from drawbacks such as an excess of hyperparameters, getting stuck in local optima, and poor generalization. This paper introduces a novel Caputo fractional-order gradient descent (MFFGD) algorithm to address these limitations. It provides fractional-order gradient derivation and error analysis for different activation functions and loss functions within the network, simplifying the computation of traditional fractional order gradients. Additionally, by introducing a memory factor to record past gradient variations, MFFGD achieves adaptive adjustment capabilities. Comparative experiments were conducted on multiple sets of datasets with different modalities, and the results, along with theoretical analysis, demonstrate the superiority of MFFGD over other optimizers.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224013778","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As a primary optimization method for neural networks, gradient descent algorithm has received significant attention in the recent development of deep neural networks. However, current gradient descent algorithms still suffer from drawbacks such as an excess of hyperparameters, getting stuck in local optima, and poor generalization. This paper introduces a novel Caputo fractional-order gradient descent (MFFGD) algorithm to address these limitations. It provides fractional-order gradient derivation and error analysis for different activation functions and loss functions within the network, simplifying the computation of traditional fractional order gradients. Additionally, by introducing a memory factor to record past gradient variations, MFFGD achieves adaptive adjustment capabilities. Comparative experiments were conducted on multiple sets of datasets with different modalities, and the results, along with theoretical analysis, demonstrate the superiority of MFFGD over other optimizers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MFFGD:用于 DNN 的自适应卡普托分数阶梯度算法
作为神经网络的主要优化方法,梯度下降算法在近年来深度神经网络的发展中受到了极大关注。然而,目前的梯度下降算法仍存在超参数过多、陷入局部最优、泛化能力差等缺点。本文介绍了一种新颖的卡普托分数阶梯度下降(MFFGD)算法,以解决这些局限性。它为网络中不同的激活函数和损失函数提供分数阶梯度推导和误差分析,简化了传统分数阶梯度的计算。此外,通过引入记忆因子来记录过去的梯度变化,MFFGD 实现了自适应调整功能。我们在多组不同模式的数据集上进行了对比实验,结果和理论分析都证明了 MFFGD 优于其他优化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
An efficient re-parameterization feature pyramid network on YOLOv8 to the detection of steel surface defect Editorial Board Multi-contrast image clustering via multi-resolution augmentation and momentum-output queues Augmented ELBO regularization for enhanced clustering in variational autoencoders Learning from different perspectives for regret reduction in reinforcement learning: A free energy approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1