Paweł Leszczyński;Kamil Kutorasiński;Marcin Szewczyk;Jarosław Pawłowski
{"title":"Machine-Learned Models for Power Magnetic Material Characteristics","authors":"Paweł Leszczyński;Kamil Kutorasiński;Marcin Szewczyk;Jarosław Pawłowski","doi":"10.1109/TPEL.2024.3463744","DOIUrl":null,"url":null,"abstract":"We present a general framework for modeling power magnetic materials characteristics using deep neural networks. Magnetic materials represented by multidimensional characteristics (that mimic measurements) are used to train the neural autoencoder model in an unsupervised manner. The encoder is trying to predict the material parameters of a theoretical model, which is then used in a decoder part. The decoder, using the predicted parameters, reconstructs the input characteristics. The neural model is trained to capture a synthetically generated set of characteristics that can cover a broad range of material behaviors, leading to a model that can generalize on the underlying physics rather than just optimize the model parameters for a single measurement. After setting up the model, we prove its usefulness in the complex problem of modeling magnetic materials in the frequency and current (out-of-linear range) domains simultaneously, for which we use measured characteristics obtained for frequency up to 10 MHz and H-field up to saturation.","PeriodicalId":13267,"journal":{"name":"IEEE Transactions on Power Electronics","volume":"40 1","pages":"1554-1562"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10684126/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We present a general framework for modeling power magnetic materials characteristics using deep neural networks. Magnetic materials represented by multidimensional characteristics (that mimic measurements) are used to train the neural autoencoder model in an unsupervised manner. The encoder is trying to predict the material parameters of a theoretical model, which is then used in a decoder part. The decoder, using the predicted parameters, reconstructs the input characteristics. The neural model is trained to capture a synthetically generated set of characteristics that can cover a broad range of material behaviors, leading to a model that can generalize on the underlying physics rather than just optimize the model parameters for a single measurement. After setting up the model, we prove its usefulness in the complex problem of modeling magnetic materials in the frequency and current (out-of-linear range) domains simultaneously, for which we use measured characteristics obtained for frequency up to 10 MHz and H-field up to saturation.
期刊介绍:
The IEEE Transactions on Power Electronics journal covers all issues of widespread or generic interest to engineers who work in the field of power electronics. The Journal editors will enforce standards and a review policy equivalent to the IEEE Transactions, and only papers of high technical quality will be accepted. Papers which treat new and novel device, circuit or system issues which are of generic interest to power electronics engineers are published. Papers which are not within the scope of this Journal will be forwarded to the appropriate IEEE Journal or Transactions editors. Examples of papers which would be more appropriately published in other Journals or Transactions include: 1) Papers describing semiconductor or electron device physics. These papers would be more appropriate for the IEEE Transactions on Electron Devices. 2) Papers describing applications in specific areas: e.g., industry, instrumentation, utility power systems, aerospace, industrial electronics, etc. These papers would be more appropriate for the Transactions of the Society which is concerned with these applications. 3) Papers describing magnetic materials and magnetic device physics. These papers would be more appropriate for the IEEE Transactions on Magnetics. 4) Papers on machine theory. These papers would be more appropriate for the IEEE Transactions on Power Systems. While original papers of significant technical content will comprise the major portion of the Journal, tutorial papers and papers of historical value are also reviewed for publication.