Hierarchical Self-Learning Knowledge Inference Based on Markov Random Field for Semantic Segmentation of Remote Sensing Images

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2024-09-18 DOI:10.1109/TGRS.2024.3463433
Yuncheng Chen;Leiguang Wang;Jingying Li;Chen Zheng
{"title":"Hierarchical Self-Learning Knowledge Inference Based on Markov Random Field for Semantic Segmentation of Remote Sensing Images","authors":"Yuncheng Chen;Leiguang Wang;Jingying Li;Chen Zheng","doi":"10.1109/TGRS.2024.3463433","DOIUrl":null,"url":null,"abstract":"Semantic segmentation is one of the most important tasks in the field of remote sensing. As the spatial resolution increases, the remote sensing images can capture more detailed information and make hierarchical semantic interpretation possible. However, hierarchical semantic segmentation encounters high heterogeneity not only within the intra-layer classes but also among inter-layer classes. It brings challenges to semantic segmentation methods such as the convolutional neural network (CNN). In this article, a hierarchical self-learning knowledge inference model (HSKIM) based on the Markov random field (MRF) model is proposed for hierarchical semantic segmentation of remote sensing images. The HSKIM model introduces a new framework that integrates the advantages of CNN-based data feature learning and MRF-based hierarchical semantic inference. It contains three modules: data learning module (\n<inline-formula> <tex-math>$\\boldsymbol {D}$ </tex-math></inline-formula>\n), inference units generation module (\n<inline-formula> <tex-math>$\\boldsymbol {I}$ </tex-math></inline-formula>\n), and self-learning knowledge inference module (\n<inline-formula> <tex-math>$\\boldsymbol {S}$ </tex-math></inline-formula>\n). The module \n<inline-formula> <tex-math>$\\boldsymbol {D}$ </tex-math></inline-formula>\n uses CNN to learn specific data features layer by layer and extract preliminary geographical objects as the initial results. The module I refines the geographical objects using a novel boundary-preservation trick to generate more accurate inference units with clear geographical meaning. The module S introduces a hierarchical object-based MRF model to implement semantic inference among intra-layer and inter-layer inference units, guided by the spatial interactions and geographical criteria. This module can self-learn and update the relationship between classes iteratively and provide the final result. Experiments on the GID dataset with hierarchical classes, alongside 12 state-of-the-art CNN-based methods, validate the effectiveness and robustness of the proposed HSKIM model. The code of this article is available at \n<uri>https://github.com/iichengzi/HSKIM</uri>\n.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10683796/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic segmentation is one of the most important tasks in the field of remote sensing. As the spatial resolution increases, the remote sensing images can capture more detailed information and make hierarchical semantic interpretation possible. However, hierarchical semantic segmentation encounters high heterogeneity not only within the intra-layer classes but also among inter-layer classes. It brings challenges to semantic segmentation methods such as the convolutional neural network (CNN). In this article, a hierarchical self-learning knowledge inference model (HSKIM) based on the Markov random field (MRF) model is proposed for hierarchical semantic segmentation of remote sensing images. The HSKIM model introduces a new framework that integrates the advantages of CNN-based data feature learning and MRF-based hierarchical semantic inference. It contains three modules: data learning module ( $\boldsymbol {D}$ ), inference units generation module ( $\boldsymbol {I}$ ), and self-learning knowledge inference module ( $\boldsymbol {S}$ ). The module $\boldsymbol {D}$ uses CNN to learn specific data features layer by layer and extract preliminary geographical objects as the initial results. The module I refines the geographical objects using a novel boundary-preservation trick to generate more accurate inference units with clear geographical meaning. The module S introduces a hierarchical object-based MRF model to implement semantic inference among intra-layer and inter-layer inference units, guided by the spatial interactions and geographical criteria. This module can self-learn and update the relationship between classes iteratively and provide the final result. Experiments on the GID dataset with hierarchical classes, alongside 12 state-of-the-art CNN-based methods, validate the effectiveness and robustness of the proposed HSKIM model. The code of this article is available at https://github.com/iichengzi/HSKIM .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于马尔可夫随机场的分层自学知识推理用于遥感图像的语义分割
语义分割是遥感领域最重要的任务之一。随着空间分辨率的提高,遥感图像可以捕捉到更详细的信息,使分层语义解释成为可能。然而,分层语义分割不仅在层内类别之间,而且在层间类别之间都会遇到高度异质性。这给卷积神经网络(CNN)等语义分割方法带来了挑战。本文提出了一种基于马尔可夫随机场(MRF)模型的分层自学习知识推理模型(HSKIM),用于遥感图像的分层语义分割。HSKIM 模型引入了一个新框架,整合了基于 CNN 的数据特征学习和基于 MRF 的分层语义推断的优势。它包含三个模块:数据学习模块($\boldsymbol {D}$)、推理单元生成模块($\boldsymbol {I}$)和自学知识推理模块($\boldsymbol {S}$)。模块 $\boldsymbol {D}$ 利用 CNN 逐层学习特定的数据特征,并提取初步的地理对象作为初始结果。模块 I 使用新颖的边界保护技巧完善地理对象,以生成具有明确地理意义的更精确推理单元。模块 S 引入基于对象的分层 MRF 模型,在空间交互和地理标准的指导下,实现层内和层间推理单元之间的语义推理。该模块可以自我学习和迭代更新类之间的关系,并提供最终结果。在具有分层类别的 GID 数据集上进行的实验,以及 12 种基于 CNN 的先进方法,验证了所提出的 HSKIM 模型的有效性和鲁棒性。本文代码见 https://github.com/iichengzi/HSKIM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
Remote sensing images destriping via nonconvex regularization and fast regional decomposition An Enhanced Global Feature-Guided Network Based on Multiple Filtering Noise Reduction for Remote Sensing Image Compression SHBGAN: Hybrid Bilateral Attention GAN for Seismic Image Super-Resolution Reconstruction FDBANet: A Fusion Frequency Domain Denoising and Multi-Scale Boundary Attention Network for Sonar Image Semantic Segmentation Remote-Sensing Image Scene Classification via Graph Template Enhancement and Supplementation Network with Dual-Teacher Knowledge Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1