Enhancing Decentralized Federated Learning With Model Pruning and Adaptive Communication

IF 9.9 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Industrial Informatics Pub Date : 2024-09-18 DOI:10.1109/TII.2024.3424497
Yin Xu;Mingjun Xiao;Jie Wu;Guoju Gao;Datian Li;Haotian Xu;Tongxiao Zhang
{"title":"Enhancing Decentralized Federated Learning With Model Pruning and Adaptive Communication","authors":"Yin Xu;Mingjun Xiao;Jie Wu;Guoju Gao;Datian Li;Haotian Xu;Tongxiao Zhang","doi":"10.1109/TII.2024.3424497","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a distributed learning paradigm that enables large-scale IoT devices to collaboratively train a shared model while preserving the privacy of local data. To avoid the single-point-of-failure of the conventional parameter server architecture, the study concentrates on the decentralized FL (DFL) paradigm building on the device-to-device communication network. However, existing DFL frameworks encounter challenges related to resource limitations, privacy protection, and data heterogeneity. To overcome these challenges, the study proposes and implements DF<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>-MPC in industrial IoT, an efficient DFL framework with personalized model pruning and adaptive communication. Specifically, a personalized pruning ratio determination approach is designed by exploiting the model pruning technique. This approach enables all devices to flexibly determine pruning ratios by themselves, thereby achieving both communication savings and privacy protection. Then, this study designs an adaptive neighbor selection scheme, which can enhance model performance and foster model consensus under resource constraints. In addition, the study theoretically proves the convergence performance of DF<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>-MPC. Finally, extensive simulations on three real-world traces are conducted to corroborate the superiority of DF<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>-MPC, demonstrating that the method can improve communication efficiency with satisfactory model accuracy and convergence performance.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"21 1","pages":"70-84"},"PeriodicalIF":9.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10683955/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning (FL) is a distributed learning paradigm that enables large-scale IoT devices to collaboratively train a shared model while preserving the privacy of local data. To avoid the single-point-of-failure of the conventional parameter server architecture, the study concentrates on the decentralized FL (DFL) paradigm building on the device-to-device communication network. However, existing DFL frameworks encounter challenges related to resource limitations, privacy protection, and data heterogeneity. To overcome these challenges, the study proposes and implements DF$^{2}$-MPC in industrial IoT, an efficient DFL framework with personalized model pruning and adaptive communication. Specifically, a personalized pruning ratio determination approach is designed by exploiting the model pruning technique. This approach enables all devices to flexibly determine pruning ratios by themselves, thereby achieving both communication savings and privacy protection. Then, this study designs an adaptive neighbor selection scheme, which can enhance model performance and foster model consensus under resource constraints. In addition, the study theoretically proves the convergence performance of DF$^{2}$-MPC. Finally, extensive simulations on three real-world traces are conducted to corroborate the superiority of DF$^{2}$-MPC, demonstrating that the method can improve communication efficiency with satisfactory model accuracy and convergence performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用模型剪枝和自适应通信加强分散式联合学习
联邦学习(FL)是一种分布式学习范式,它使大规模物联网设备能够协同训练共享模型,同时保护本地数据的隐私。为了避免传统参数服务器架构的单点故障,研究了在设备对设备通信网络上建立分散式FL (DFL)范式。然而,现有的DFL框架遇到了与资源限制、隐私保护和数据异构相关的挑战。为了克服这些挑战,该研究提出并实现了工业物联网中的DF$^{2}$-MPC,这是一种具有个性化模型修剪和自适应通信的高效DFL框架。具体而言,利用模型剪枝技术,设计了一种个性化剪枝比确定方法。这种方法使所有设备能够灵活地自行确定修剪比例,从而达到节省通信和保护隐私的目的。然后,本文设计了一种自适应邻居选择方案,在资源约束下提高模型性能,促进模型共识。此外,从理论上证明了DF$^{2}$-MPC的收敛性能。最后,在三条真实轨迹上进行了大量仿真,验证了DF$^{2}$-MPC的优越性,表明该方法可以提高通信效率,并具有良好的模型精度和收敛性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Industrial Informatics
IEEE Transactions on Industrial Informatics 工程技术-工程:工业
CiteScore
24.10
自引率
8.90%
发文量
1202
审稿时长
5.1 months
期刊介绍: The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.
期刊最新文献
Model-Free Prediction Current Control of Permanent Magnet Synchronous Motor Based on Simplified Gated Recurrent Unit Distributed Moving Horizon Estimation Over Sporadically Observing Sensor Networks: An L-Step Approach With Stability Guarantees Direct Data-Driven Trajectory Tracking Control for Autonomous Vehicles via Algebraic Regulator Under Limited Data An Intelligent Multitask Framework for Industrial Gas Leak Detection and Analysis With Infrared Optical Gas Imaging Fairness-Aware Deterministic Joint Offloading and Scheduling for Industrial Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1