Syed Nabeel-Shah, Shuye Pu, James D. Burns, Ulrich Braunschweig, Nujhat Ahmed, Giovanni L. Burke, Hyunmin Lee, Ernest Radovani, Guoqing Zhong, Hua Tang, Edyta Marcon, Zhaolei Zhang, Timothy R. Hughes, Benjamin J. Blencowe, Jack F. Greenblatt
{"title":"C2H2-zinc-finger transcription factors bind RNA and function in diverse post-transcriptional regulatory processes","authors":"Syed Nabeel-Shah, Shuye Pu, James D. Burns, Ulrich Braunschweig, Nujhat Ahmed, Giovanni L. Burke, Hyunmin Lee, Ernest Radovani, Guoqing Zhong, Hua Tang, Edyta Marcon, Zhaolei Zhang, Timothy R. Hughes, Benjamin J. Blencowe, Jack F. Greenblatt","doi":"10.1016/j.molcel.2024.08.037","DOIUrl":null,"url":null,"abstract":"<p>Cys2-His2 zinc-finger proteins (C2H2-ZNFs) constitute the largest class of DNA-binding transcription factors (TFs) yet remain largely uncharacterized. Although certain family members, e.g., GTF3A, have been shown to bind both DNA and RNA, the extent to which C2H2-ZNFs interact with—and regulate—RNA-associated processes is not known. Using UV crosslinking and immunoprecipitation (CLIP), we observe that 148 of 150 analyzed C2H2-ZNFs bind directly to RNA in human cells. By integrating CLIP sequencing (CLIP-seq) RNA-binding maps for 50 of these C2H2-ZNFs with data from chromatin immunoprecipitation sequencing (ChIP-seq), protein-protein interaction assays, and transcriptome profiling experiments, we observe that the RNA-binding profiles of C2H2-ZNFs are generally distinct from their DNA-binding preferences and that they regulate a variety of post-transcriptional processes, including pre-mRNA splicing, cleavage and polyadenylation, and m<sup>6</sup>A modification of mRNA. Our results thus define a substantially expanded repertoire of C2H2-ZNFs that bind RNA and provide an important resource for elucidating post-transcriptional regulatory programs.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":null,"pages":null},"PeriodicalIF":14.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.08.037","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cys2-His2 zinc-finger proteins (C2H2-ZNFs) constitute the largest class of DNA-binding transcription factors (TFs) yet remain largely uncharacterized. Although certain family members, e.g., GTF3A, have been shown to bind both DNA and RNA, the extent to which C2H2-ZNFs interact with—and regulate—RNA-associated processes is not known. Using UV crosslinking and immunoprecipitation (CLIP), we observe that 148 of 150 analyzed C2H2-ZNFs bind directly to RNA in human cells. By integrating CLIP sequencing (CLIP-seq) RNA-binding maps for 50 of these C2H2-ZNFs with data from chromatin immunoprecipitation sequencing (ChIP-seq), protein-protein interaction assays, and transcriptome profiling experiments, we observe that the RNA-binding profiles of C2H2-ZNFs are generally distinct from their DNA-binding preferences and that they regulate a variety of post-transcriptional processes, including pre-mRNA splicing, cleavage and polyadenylation, and m6A modification of mRNA. Our results thus define a substantially expanded repertoire of C2H2-ZNFs that bind RNA and provide an important resource for elucidating post-transcriptional regulatory programs.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.