Anticipating Optical Availability in Hybrid RF/FSO Links Using RF Beacons and Deep Learning

Mostafa Ibrahim;Arsalan Ahmad;Sabit Ekin;Peter LoPresti;Serhat Altunc;Obadiah Kegege;John F. O'Hara
{"title":"Anticipating Optical Availability in Hybrid RF/FSO Links Using RF Beacons and Deep Learning","authors":"Mostafa Ibrahim;Arsalan Ahmad;Sabit Ekin;Peter LoPresti;Serhat Altunc;Obadiah Kegege;John F. O'Hara","doi":"10.1109/TMLCN.2024.3457490","DOIUrl":null,"url":null,"abstract":"Radiofrequency (RF) communications offer reliable but low data rates and energy-inefficient satellite links, while free-space optical (FSO) promises high bandwidth but struggles with disturbances imposed by atmospheric effects. A hybrid RF/FSO architecture aims to achieve optimal reliability along with high data rates for space communications. Accurate prediction of dynamic ground-to-satellite FSO link availability is critical for routing decisions in low-earth orbit constellations. In this paper, we propose a system leveraging ubiquitous RF links to proactively forecast FSO link degradation prior to signal drops below threshold levels. This enables pre-calculation of rerouting to maximally maintain high data rate FSO links throughout the duration of weather effects. We implement a supervised learning model to anticipate FSO attenuation based on the analysis of RF patterns. Through the simulation of a dense lower earth orbit (LEO) satellite constellation, we demonstrate the efficacy of our approach in a simulated satellite network, highlighting the balance between predictive accuracy and prediction duration. An emulated cloud attenuation model is proposed to provide insight into the temporal profiles of RF signals and their correlation to FSO channel dynamics. Our investigation sheds light on the trade-offs between prediction horizon and accuracy arising from RF beacon numbers and proximity.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"1369-1388"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10672517","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10672517/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radiofrequency (RF) communications offer reliable but low data rates and energy-inefficient satellite links, while free-space optical (FSO) promises high bandwidth but struggles with disturbances imposed by atmospheric effects. A hybrid RF/FSO architecture aims to achieve optimal reliability along with high data rates for space communications. Accurate prediction of dynamic ground-to-satellite FSO link availability is critical for routing decisions in low-earth orbit constellations. In this paper, we propose a system leveraging ubiquitous RF links to proactively forecast FSO link degradation prior to signal drops below threshold levels. This enables pre-calculation of rerouting to maximally maintain high data rate FSO links throughout the duration of weather effects. We implement a supervised learning model to anticipate FSO attenuation based on the analysis of RF patterns. Through the simulation of a dense lower earth orbit (LEO) satellite constellation, we demonstrate the efficacy of our approach in a simulated satellite network, highlighting the balance between predictive accuracy and prediction duration. An emulated cloud attenuation model is proposed to provide insight into the temporal profiles of RF signals and their correlation to FSO channel dynamics. Our investigation sheds light on the trade-offs between prediction horizon and accuracy arising from RF beacon numbers and proximity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用射频信标和深度学习预测射频/FSO 混合链路中的光学可用性
射频(RF)通信提供可靠但低数据传输率和低能效的卫星链路,而自由空间光学(FSO)承诺提供高带宽,但在大气效应的干扰下举步维艰。射频/FSO 混合架构旨在实现空间通信的最佳可靠性和高数据传输率。准确预测地面到卫星 FSO 链路的动态可用性对于低地轨道星座的路由决策至关重要。在本文中,我们提出了一个系统,利用无处不在的射频链路,在信号降到阈值水平以下之前主动预测 FSO 链路的衰减。这样就能预先计算重新路由,在整个天气影响期间最大限度地保持高数据速率 FSO 链路。我们实施了一个监督学习模型,根据对射频模式的分析来预测 FSO 衰减。通过模拟密集的低地球轨道 (LEO) 卫星群,我们展示了我们的方法在模拟卫星网络中的功效,强调了预测准确性和预测持续时间之间的平衡。我们提出了一个模拟云衰减模型,以便深入了解射频信号的时间轮廓及其与 FSO 信道动态的相关性。我们的研究揭示了射频信标数量和邻近性在预测期限和准确性之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications Multi-Agent Reinforcement Learning With Action Masking for UAV-Enabled Mobile Communications Online Learning for Intelligent Thermal Management of Interference-Coupled and Passively Cooled Base Stations Robust and Lightweight Modeling of IoT Network Behaviors From Raw Traffic Packets Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1