A Satellite Data-Driven Coherent Parameters Estimation Method via Hierarchical HGRFT for Distributed Coherent Aperture Radar

Pucheng Li;Zegang Ding;Linghao Li;Linhan Lv;Zhe Li;Rui Zhu;Guanxing Wang
{"title":"A Satellite Data-Driven Coherent Parameters Estimation Method via Hierarchical HGRFT for Distributed Coherent Aperture Radar","authors":"Pucheng Li;Zegang Ding;Linghao Li;Linhan Lv;Zhe Li;Rui Zhu;Guanxing Wang","doi":"10.1109/TRS.2024.3452764","DOIUrl":null,"url":null,"abstract":"The distributed coherent aperture radar (DCAR) utilizes full coherent processing (FCP). Compared to single radar unit observations, N radar units can achieve an \n<inline-formula> <tex-math>$N^{3}$ </tex-math></inline-formula>\n times increase in signal-to-noise ratio (SNR), providing an advantage in observing distant targets. However, its stringent requirements for time and phase of multiple radar units make coherent parameters (CPs) estimation the crucial aspect of FCP. This article introduces a satellite data-driven CPs estimation method via hierarchical and hybrid generalized Radon-Fourier transform (HHGRFT). First, the FCP procedure is outlined, and the signal model with CPs is established. Second, the principles for selecting satellites and observation time in the experimental setup are induced, along with an analysis of the SNR variations during processing. Furthermore, through a hierarchical processing approach using the generalized Radon-Fourier transform (GRFT), interpulse coherence (IPC) processing, interunit-radar coherence (IURC) processing, and inter-subaperture coherent or noncoherent processing are sequentially conducted. The utilization of generalized sharpness (GS) and gradient descent method facilitated CPs estimation, subsequently enhancing the SNR post-coherence processing. Finally, the proposed method has been validated through simulation and successfully applied to a real DCAR system.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"791-804"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10662924/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The distributed coherent aperture radar (DCAR) utilizes full coherent processing (FCP). Compared to single radar unit observations, N radar units can achieve an $N^{3}$ times increase in signal-to-noise ratio (SNR), providing an advantage in observing distant targets. However, its stringent requirements for time and phase of multiple radar units make coherent parameters (CPs) estimation the crucial aspect of FCP. This article introduces a satellite data-driven CPs estimation method via hierarchical and hybrid generalized Radon-Fourier transform (HHGRFT). First, the FCP procedure is outlined, and the signal model with CPs is established. Second, the principles for selecting satellites and observation time in the experimental setup are induced, along with an analysis of the SNR variations during processing. Furthermore, through a hierarchical processing approach using the generalized Radon-Fourier transform (GRFT), interpulse coherence (IPC) processing, interunit-radar coherence (IURC) processing, and inter-subaperture coherent or noncoherent processing are sequentially conducted. The utilization of generalized sharpness (GS) and gradient descent method facilitated CPs estimation, subsequently enhancing the SNR post-coherence processing. Finally, the proposed method has been validated through simulation and successfully applied to a real DCAR system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式相干孔径雷达的分层 HGRFT 卫星数据驱动相干参数估计方法
分布式相干孔径雷达(DCAR)采用全相干处理技术(FCP)。与单个雷达单元观测相比,N 个雷达单元的信噪比(SNR)可提高 N^{3}$ 倍,这为观测远距离目标提供了优势。然而,多雷达单元对时间和相位的严格要求使得相干参数(CP)估计成为 FCP 的关键环节。本文通过分层和混合广义拉顿-傅里叶变换(HHGRFT)介绍了一种卫星数据驱动的相干参数估计方法。首先,概述了 FCP 程序,并建立了带 CPs 的信号模型。其次,介绍了实验装置中选择卫星和观测时间的原则,并分析了处理过程中信噪比的变化。此外,通过使用广义拉顿-傅里叶变换(GRFT)的分层处理方法,依次进行了脉冲间相干(IPC)处理、单元雷达间相干(IURC)处理以及子孔隙间相干或非相干处理。利用广义锐度(GS)和梯度下降法促进了 CPs 估计,从而提高了相干处理后的信噪比。最后,通过模拟验证了所提出的方法,并将其成功应用于实际的 DCAR 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Range–Doppler Resolution Enhancement of Ground-Based Radar by Data Extrapolation Technique Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1