The Alkynyl π Bond of sp-C Enhanced Rapid, Reversible Li–C Coupling to Accelerate Reaction Kinetics of Lithium Ions

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-09-19 DOI:10.1021/jacs.4c08920
Jingchi Gao, Xingru Yan, Xiangyao Gu, Xinlong Fu, Qian Chang, Zhihui Zhang, Yi Wang, Changshui Huang, Yuliang Li
{"title":"The Alkynyl π Bond of sp-C Enhanced Rapid, Reversible Li–C Coupling to Accelerate Reaction Kinetics of Lithium Ions","authors":"Jingchi Gao, Xingru Yan, Xiangyao Gu, Xinlong Fu, Qian Chang, Zhihui Zhang, Yi Wang, Changshui Huang, Yuliang Li","doi":"10.1021/jacs.4c08920","DOIUrl":null,"url":null,"abstract":"Graphdiyne (GDY) is a promising anode for rechargeable batteries with high capacity, outstanding cyclic stability, and low diffusion energy. The unique structure of GDY endows distinctive mechanisms for metal-ion storage, and it is of great significance to further visualize the complex reaction kinetics of the redox process. Here, we systematically tracked the reaction kinetics and provided mechanistic insights into the lithium ions in the GDY to reveal the feature of the cation-π effect. It has been demonstrated that, unlike only one π bond in sp<sup>2</sup>-C, π electrons provided by one of the two alkynyl π bonds in sp-C can achieve proper interaction and speedy capture of lithium ions; thus, reversible Li–C coupling can be formed between electron-rich sp-C and lithium ions. In addition to interlayer intercalation in sp<sup>2</sup>-C regions, nanopores filling triangular-like cavities composed of highly conjugated sp-C contribute to the major capacity in flat voltage plateau regions. Therefore, a capture/pores filling-intercalation hybrid mechanism can be found in GDY. The coexistence of sp and sp<sup>2</sup> carbon enables GDY electrodes with rapid Li<sup>+</sup> diffusion, high capacity of over 1435 mAh g<sup>–1</sup>, extraordinary rate capability, and cyclic stability for more than 10000 cycles at 10A g<sup>–1</sup>. These results provide guidance for developing advanced carbon electrodes with optimized reaction kinetics for rechargeable batteries.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"15 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c08920","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphdiyne (GDY) is a promising anode for rechargeable batteries with high capacity, outstanding cyclic stability, and low diffusion energy. The unique structure of GDY endows distinctive mechanisms for metal-ion storage, and it is of great significance to further visualize the complex reaction kinetics of the redox process. Here, we systematically tracked the reaction kinetics and provided mechanistic insights into the lithium ions in the GDY to reveal the feature of the cation-π effect. It has been demonstrated that, unlike only one π bond in sp2-C, π electrons provided by one of the two alkynyl π bonds in sp-C can achieve proper interaction and speedy capture of lithium ions; thus, reversible Li–C coupling can be formed between electron-rich sp-C and lithium ions. In addition to interlayer intercalation in sp2-C regions, nanopores filling triangular-like cavities composed of highly conjugated sp-C contribute to the major capacity in flat voltage plateau regions. Therefore, a capture/pores filling-intercalation hybrid mechanism can be found in GDY. The coexistence of sp and sp2 carbon enables GDY electrodes with rapid Li+ diffusion, high capacity of over 1435 mAh g–1, extraordinary rate capability, and cyclic stability for more than 10000 cycles at 10A g–1. These results provide guidance for developing advanced carbon electrodes with optimized reaction kinetics for rechargeable batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
sp-C 的炔基π键增强了快速、可逆的锂-碳耦合,从而加快了锂离子的反应动力学
Graphdiyne(GDY)具有高容量、出色的循环稳定性和低扩散能,是一种很有前途的充电电池阳极。GDY 的独特结构赋予了其独特的金属离子存储机制,进一步观察氧化还原过程中复杂的反应动力学具有重要意义。在此,我们对反应动力学进行了系统追踪,并对 GDY 中的锂离子进行了机理研究,揭示了阳离子-π效应的特征。研究表明,与 sp2-C 中只有一个π键不同,sp-C 中两个炔基π键中的一个所提供的π电子可以实现适当的相互作用并迅速捕获锂离子;因此,富电子的 sp-C 与锂离子之间可以形成可逆的锂-C 耦合。除了 sp2-C 区域的层间插层外,由高度共轭 sp-C 构成的三角形空腔中的纳米孔也是平电压高原区的主要容量来源。因此,在 GDY 中可以发现一种捕获/孔填充-叠加混合机制。sp 和 sp2 碳的共存使 GDY 电极具有快速的 Li+ 扩散、超过 1435 mAh g-1 的高容量、非凡的速率能力以及在 10A g-1 下超过 10000 次循环的循环稳定性。这些结果为开发具有优化反应动力学的先进碳电极提供了指导,可用于充电电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Hydrophobic Metal-Organic Frameworks Enable Superior High-Pressure Ammonia Storage through Geometric Design. Integrated Native Mass Spectrometry Imaging of Soluble and Membrane Proteins Ring-Opening Alkyne Metathesis Polymerization Catalyzed by a Bench-Stable Rhenium Complex Compatibilization of Polyolefin Blends through Acid–Base Interactions Elucidating Leader Peptide–Enzyme Dynamics in Lactazole Biosynthesis Using mRNA Display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1