Identification and characterization of two new oxidation degradation impurities in cinnarizine through LC-HRMS/MS and 1H NMR, along with in silico toxicity predictions of its degradation products
{"title":"Identification and characterization of two new oxidation degradation impurities in cinnarizine through LC-HRMS/MS and 1H NMR, along with in silico toxicity predictions of its degradation products","authors":"Mohit Jain, Shahnawaz Khan","doi":"10.1002/bmc.6013","DOIUrl":null,"url":null,"abstract":"<p>Cinnarizine <b>(CIN)</b> drug substance is a US FDA and EMA approved antihistaminic drug, There is no report available on <b>CIN</b> for the identification of degradation products and their degradation pathway. Herein, we report a stability-indicating assay method for CIN, the formation and characterization of its major degradation products using LC-HRMS/MS and <sup>1</sup>H-NMR techniques. CIN was subjected to oxidation, acid, base, thermal and photolytic degradation conditions. Two unknown degradation products (DP-1 and DP-2) of CIN were formed under oxidative conditions. We successfully separated these degradants using gradient elution on an Inertsil ODS 3 V column (150 × 4.6 mm, 5 μm) using mobile phase A consisting of 0.1% formic acid and the mobile phase B consisting of 0.1% formic acid/acetonitrile (20/80, v/v). CIN was labile to oxidative conditions and stable to acidic, alkaline hydrolytic, photolytic and thermal conditions. The degradation pathways were derived from the nature of the product formed under oxidative degradation conditions and available reports for confirmation of the mechanism. Since the stability-indicating assay method can be utilized for stability studies and routine quality control of CIN in both the pharmaceutical industry and research laboratories. This method has been validated in compliance with the guidelines set forth by the ICH.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"38 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.6013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cinnarizine (CIN) drug substance is a US FDA and EMA approved antihistaminic drug, There is no report available on CIN for the identification of degradation products and their degradation pathway. Herein, we report a stability-indicating assay method for CIN, the formation and characterization of its major degradation products using LC-HRMS/MS and 1H-NMR techniques. CIN was subjected to oxidation, acid, base, thermal and photolytic degradation conditions. Two unknown degradation products (DP-1 and DP-2) of CIN were formed under oxidative conditions. We successfully separated these degradants using gradient elution on an Inertsil ODS 3 V column (150 × 4.6 mm, 5 μm) using mobile phase A consisting of 0.1% formic acid and the mobile phase B consisting of 0.1% formic acid/acetonitrile (20/80, v/v). CIN was labile to oxidative conditions and stable to acidic, alkaline hydrolytic, photolytic and thermal conditions. The degradation pathways were derived from the nature of the product formed under oxidative degradation conditions and available reports for confirmation of the mechanism. Since the stability-indicating assay method can be utilized for stability studies and routine quality control of CIN in both the pharmaceutical industry and research laboratories. This method has been validated in compliance with the guidelines set forth by the ICH.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.