Inheritance bias of deletion-harbouring mtDNA in yeast: the role of copy number and intracellular selection

Nataliia D. Kashko, Iuliia Karavaeva, Elena S. Glagoleva, Maria D. Logacheva, Sofya K. Garushyants, Dmitry A. Knorre
{"title":"Inheritance bias of deletion-harbouring mtDNA in yeast: the role of copy number and intracellular selection","authors":"Nataliia D. Kashko, Iuliia Karavaeva, Elena S. Glagoleva, Maria D. Logacheva, Sofya K. Garushyants, Dmitry A. Knorre","doi":"10.1101/2024.09.11.612442","DOIUrl":null,"url":null,"abstract":"Eukaryotic cells contain multiple copies of mitochondrial DNA (mtDNA) molecules that replicate independently. Cell mtDNA content and variability contributes to the overall cell fitness. During sexual reproduction, fungi usually inherit mtDNA from both parents, however, the distribution of the mtDNA in the progeny can be biased toward some mtDNA variants. For example, crossing Saccharomyces cerevisiae strain carrying wild type (rho+) mtDNA with the strain carrying mutant mtDNA variant with large deletion (rho−) can produce up to 99-100% of rho− diploid progeny. Two factors could contribute to this phenomenon. First, rho− cells may accumulate more copies of mtDNA molecules per cell than wild-type cells, making rho− mtDNA a prevalent mtDNA molecule in zygotes. This consequently leads to a high portion of rho− diploid cells in the offspring. Second, rho− mtDNA may have a competitive advantage within heteroplasmic cells, and therefore could displace rho+ mtDNA in a series of generations, regardless of their initial ratio. To assess the contribution of these factors, we investigated the genotypes and phenotypes of twenty two rho− yeast strains. We found that indeed rho− cells have a higher mtDNA copy number per cell than rho+ strains. Using an in silico modelling of mtDNA selection and random drift in heteroplasmic yeast cells, we assessed the intracellular fitness of mutant mtDNA variants. Our model indicates that both higher copy numbers and intracellular fitness advantage of the rho- mtDNA contribute to the biased inheritance of rho− mtDNA.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.612442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Eukaryotic cells contain multiple copies of mitochondrial DNA (mtDNA) molecules that replicate independently. Cell mtDNA content and variability contributes to the overall cell fitness. During sexual reproduction, fungi usually inherit mtDNA from both parents, however, the distribution of the mtDNA in the progeny can be biased toward some mtDNA variants. For example, crossing Saccharomyces cerevisiae strain carrying wild type (rho+) mtDNA with the strain carrying mutant mtDNA variant with large deletion (rho−) can produce up to 99-100% of rho− diploid progeny. Two factors could contribute to this phenomenon. First, rho− cells may accumulate more copies of mtDNA molecules per cell than wild-type cells, making rho− mtDNA a prevalent mtDNA molecule in zygotes. This consequently leads to a high portion of rho− diploid cells in the offspring. Second, rho− mtDNA may have a competitive advantage within heteroplasmic cells, and therefore could displace rho+ mtDNA in a series of generations, regardless of their initial ratio. To assess the contribution of these factors, we investigated the genotypes and phenotypes of twenty two rho− yeast strains. We found that indeed rho− cells have a higher mtDNA copy number per cell than rho+ strains. Using an in silico modelling of mtDNA selection and random drift in heteroplasmic yeast cells, we assessed the intracellular fitness of mutant mtDNA variants. Our model indicates that both higher copy numbers and intracellular fitness advantage of the rho- mtDNA contribute to the biased inheritance of rho− mtDNA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酵母中缺失相邻mtDNA的遗传偏倚:拷贝数和细胞内选择的作用
真核细胞含有多个独立复制的线粒体 DNA(mtDNA)分子拷贝。细胞中的 mtDNA 含量和变异性有助于提高细胞的整体健康水平。在有性生殖过程中,真菌通常会从双亲那里继承 mtDNA,但后代中 mtDNA 的分布可能会偏向于某些 mtDNA 变体。例如,将携带野生型(rho+)mtDNA 的酿酒酵母菌株与携带大量缺失的突变型 mtDNA 变异株(rho-)杂交,可产生高达 99-100% 的 rho- 二倍体后代。造成这种现象的因素有两个。首先,与野生型细胞相比,rho-细胞可能会在每个细胞中积累更多的 mtDNA 分子拷贝,从而使 rho- mtDNA 成为子代中普遍存在的 mtDNA 分子。因此,后代中的 rho- 二倍体细胞比例很高。其次,rho-mtDNA 在异质细胞中可能具有竞争优势,因此可以在一系列世代中取代 rho+ mtDNA,而不管它们的初始比例如何。为了评估这些因素的作用,我们研究了 22 株 rho- 酵母菌的基因型和表型。我们发现,与 rho+ 菌株相比,rho 细胞确实具有更高的 mtDNA 拷贝数。通过对异质酵母细胞中的mtDNA选择和随机漂移进行硅模拟,我们评估了突变mtDNA变体的细胞内适应性。我们的模型表明,rho-mtDNA较高的拷贝数和细胞内适合度优势导致了rho-mtDNA的偏向遗传。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiplexed spatial mapping of chromatin features, transcriptome, and proteins in tissues Mitochondrial superoxide acts in the intestine to extend longevity AyurPhenoClusters define common molecular roots for rare diseases and uncover ciliary dysfunctions in syndromic conditions Screening and identification of gene expression in large cohorts of clinical lung cancer samples unveils the major involvement of EZH2 and SOX2 LncRNA TAAL is a Modulator of Tie1-Mediated Vascular Function in Diabetic Retinopathy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1