Shield machine pose prediction based on CNN-GRU-Attention

IF 1.6 Q2 ENGINEERING, MULTIDISCIPLINARY Engineering Research Express Pub Date : 2024-09-15 DOI:10.1088/2631-8695/ad7781
Xuanyu Liu and Kun Yang
{"title":"Shield machine pose prediction based on CNN-GRU-Attention","authors":"Xuanyu Liu and Kun Yang","doi":"10.1088/2631-8695/ad7781","DOIUrl":null,"url":null,"abstract":"This paper presents a shield machine pose prediction method based on Convolutional Neural Network (CNN) - Gated Recurrent Unit (GRU) with Attention mechanism (Attention). Firstly, the Pearson correlation coefficient is employed to select input parameters highly related to the position and posture of the shield machine. Then, a convolutional neural network is introduced to extract the long-term short-term feature dependency features in the operation data of the shield machine, optimizing the model’s input. The attention mechanism is integrated into the gated loop unit to make the model more targeted in using key information in the input sequence and improve the accuracy of the shield machine pose prediction model. The effectiveness of this method is verified by the example of Beijing Metro Line 10. Compared with GRU-Attention and LSTM-Attention models, the mean value of determination coefficient R2 increased from 0.872 and 0.886 to 0.959, and the mean value of root mean square error RMSE decreased from 2.78 and 2.52 to 2.14. This method can provide effective prediction for the attitude and position of shield machines in actual tunnel engineering.","PeriodicalId":11753,"journal":{"name":"Engineering Research Express","volume":"53 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad7781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a shield machine pose prediction method based on Convolutional Neural Network (CNN) - Gated Recurrent Unit (GRU) with Attention mechanism (Attention). Firstly, the Pearson correlation coefficient is employed to select input parameters highly related to the position and posture of the shield machine. Then, a convolutional neural network is introduced to extract the long-term short-term feature dependency features in the operation data of the shield machine, optimizing the model’s input. The attention mechanism is integrated into the gated loop unit to make the model more targeted in using key information in the input sequence and improve the accuracy of the shield machine pose prediction model. The effectiveness of this method is verified by the example of Beijing Metro Line 10. Compared with GRU-Attention and LSTM-Attention models, the mean value of determination coefficient R2 increased from 0.872 and 0.886 to 0.959, and the mean value of root mean square error RMSE decreased from 2.78 and 2.52 to 2.14. This method can provide effective prediction for the attitude and position of shield machines in actual tunnel engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 CNN-GRU-Attention 的盾构机姿态预测
本文提出了一种基于卷积神经网络(CNN)--门控递归单元(GRU)与注意力机制(Attention)的盾构机姿态预测方法。首先,利用皮尔逊相关系数选择与盾构机位置和姿态高度相关的输入参数。然后,引入卷积神经网络提取盾构机运行数据中的长期短期特征依赖特征,优化模型的输入。注意机制被集成到门控环单元中,使模型在使用输入序列中的关键信息时更具针对性,提高了盾构机姿态预测模型的准确性。以北京地铁 10 号线为例,验证了该方法的有效性。与 GRU-Attention 模型和 LSTM-Attention 模型相比,判定系数 R2 的均值从 0.872 和 0.886 提高到 0.959,均方根误差 RMSE 的均值从 2.78 和 2.52 下降到 2.14。该方法可在实际隧道工程中对盾构机的姿态和位置进行有效预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Research Express
Engineering Research Express Engineering-Engineering (all)
CiteScore
2.20
自引率
5.90%
发文量
192
期刊最新文献
Application of voltage controlled crystal oscillators to DC voltage reference validation. Optimization design of 500 kV double grading ring suspension composite insulator with ZnO microvaristor layers based on VSCSA Soil characterization, CBR modeling, and spatial variability analysis for road subgrade: a case study of Danchuwa – Jajere Road, Yobe State, Nigeria Microstructural analysis on the compatibility of various dilution oils on magnetorheological grease performance Towards sustainable energy: integrating ERA5 data for offshore wind farm planning in India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1