Shanzhou Du, Hao Chen, Xiaohua Ding, Zhouquan Liao, Xiang Lu
{"title":"Development of Dust Emission Prediction Model for Open-Pit Mines Based on SHPB Experiment and Image Recognition Method","authors":"Shanzhou Du, Hao Chen, Xiaohua Ding, Zhouquan Liao, Xiang Lu","doi":"10.3390/atmos15091118","DOIUrl":null,"url":null,"abstract":"Open-pit coal mining offers high resource recovery, excellent safety conditions, and large-scale production. However, the process generates significant dust, leading to occupational diseases such as pneumoconiosis among miners and adversely affecting nearby vegetation through dust deposition, which hinders photosynthesis and causes ecological damage. This limits the transition of open-pit mining to a green, low-carbon model. Among these processes, blasting generates the most dust and has the widest impact range, but the specific amount of dust generated has not yet been thoroughly studied. This study integrates indoor experiments, theoretical analyses, and field tests, employing the Split Hopkinson Pressure Bar (SHPB) system to conduct impact loading tests on coal–rock samples under pressures ranging from 0.13 MPa to 2.0 MPa. The results indicate that as the impact load increases, the proportion of large-sized blocks decreases while smaller fragments and powdered samples increase, signifying intensified sample fragmentation. Using stress wave attenuation theory, this study translates indoor impact loadings to field blast shock waves, revealing the relationship between blasting dust mass fraction and impact pressure. Field tests at the Haerwusu open-pit coal mine validated the formula. Using image recognition technology to analyze post-blast muck-pile fragmentation, the estimated dust production closely matched the calculated values, with an error margin of less than 10%. This formula provides valuable insights for estimating dust production and improving dust control measures during open-pit mine blasting operations.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091118","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Open-pit coal mining offers high resource recovery, excellent safety conditions, and large-scale production. However, the process generates significant dust, leading to occupational diseases such as pneumoconiosis among miners and adversely affecting nearby vegetation through dust deposition, which hinders photosynthesis and causes ecological damage. This limits the transition of open-pit mining to a green, low-carbon model. Among these processes, blasting generates the most dust and has the widest impact range, but the specific amount of dust generated has not yet been thoroughly studied. This study integrates indoor experiments, theoretical analyses, and field tests, employing the Split Hopkinson Pressure Bar (SHPB) system to conduct impact loading tests on coal–rock samples under pressures ranging from 0.13 MPa to 2.0 MPa. The results indicate that as the impact load increases, the proportion of large-sized blocks decreases while smaller fragments and powdered samples increase, signifying intensified sample fragmentation. Using stress wave attenuation theory, this study translates indoor impact loadings to field blast shock waves, revealing the relationship between blasting dust mass fraction and impact pressure. Field tests at the Haerwusu open-pit coal mine validated the formula. Using image recognition technology to analyze post-blast muck-pile fragmentation, the estimated dust production closely matched the calculated values, with an error margin of less than 10%. This formula provides valuable insights for estimating dust production and improving dust control measures during open-pit mine blasting operations.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.