Distribution and Characteristics of Ammonia Concentration by Region in Korea

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-14 DOI:10.3390/atmos15091120
In-Ho Song, Hyun-Woong Kim, Jong-Sung Park, Seung-Myung Park, Jae-Yun Lee, Eun-Jung Nam, Yong-Jae Lim, Jung-Min Park, Myung-Soo Yoo, Seog-Yeon Cho, Hye-Jung Shin
{"title":"Distribution and Characteristics of Ammonia Concentration by Region in Korea","authors":"In-Ho Song, Hyun-Woong Kim, Jong-Sung Park, Seung-Myung Park, Jae-Yun Lee, Eun-Jung Nam, Yong-Jae Lim, Jung-Min Park, Myung-Soo Yoo, Seog-Yeon Cho, Hye-Jung Shin","doi":"10.3390/atmos15091120","DOIUrl":null,"url":null,"abstract":"In this study, the characteristics of ammonia and their effects on secondary particulate matter (PM) formation were analyzed by region in Korea in 2020. The NH3 concentration was high in GJ (11.4 ppb), a neighboring agricultural area, followed by DJ (9.0 ppb) and SE (8.6 ppb), which are located in urban areas. On the other hand, BI (2.6 ppb) and JI (4.5 ppb), which are background regions, demonstrated a lower concentration than other areas. Seasonally, ammonia was high in spring and summer, and it generally increased when human activities are active. Therefore, it is believed that the ammonia in the atmosphere not only changes depending on local emissions, but also based on temperature-dependent phase distribution characteristics. For SE and GJ, regions with relatively high ammonia concentrations, investigations into the effect of ammonia on secondary PM formation were conducted. In both regions, the ammonium-to-sulfate mole ratio tended to increase with increasing ammonia or PM2.5 concentration. It can be assumed that the PM2.5 concentration increases as nitrates are formed under the ammonia-sufficient condition. The adjusted gas ratio is generally greater than 4, indicating that there is a lot of free ammonia. Thus, it is estimated that a reduction in ammonia would not be effective to restrain nitrate formation.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"194 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091120","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the characteristics of ammonia and their effects on secondary particulate matter (PM) formation were analyzed by region in Korea in 2020. The NH3 concentration was high in GJ (11.4 ppb), a neighboring agricultural area, followed by DJ (9.0 ppb) and SE (8.6 ppb), which are located in urban areas. On the other hand, BI (2.6 ppb) and JI (4.5 ppb), which are background regions, demonstrated a lower concentration than other areas. Seasonally, ammonia was high in spring and summer, and it generally increased when human activities are active. Therefore, it is believed that the ammonia in the atmosphere not only changes depending on local emissions, but also based on temperature-dependent phase distribution characteristics. For SE and GJ, regions with relatively high ammonia concentrations, investigations into the effect of ammonia on secondary PM formation were conducted. In both regions, the ammonium-to-sulfate mole ratio tended to increase with increasing ammonia or PM2.5 concentration. It can be assumed that the PM2.5 concentration increases as nitrates are formed under the ammonia-sufficient condition. The adjusted gas ratio is generally greater than 4, indicating that there is a lot of free ammonia. Thus, it is estimated that a reduction in ammonia would not be effective to restrain nitrate formation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
韩国各地区氨浓度的分布和特点
本研究分析了 2020 年韩国各地区氨的特征及其对二次颗粒物(PM)形成的影响。邻近农业区的 GJ(11.4 ppb)的 NH3 浓度较高,其次是位于城市地区的 DJ(9.0 ppb)和 SE(8.6 ppb)。另一方面,作为背景地区的 BI(2.6 ppb)和 JI(4.5 ppb)的浓度则低于其他地区。从季节上看,氨氮在春季和夏季较高,当人类活动活跃时,氨氮普遍升高。因此,我们认为大气中的氨不仅会随着当地排放量的变化而变化,还会根据温度的相位分布特征而变化。在氨浓度相对较高的东南部和吉布提地区,研究了氨对二次可吸入颗粒物形成的影响。在这两个地区,随着氨或 PM2.5 浓度的增加,铵与硫酸盐的摩尔比趋于增加。可以认为,在氨充足的条件下,硝酸盐的形成会使 PM2.5 浓度增加。调整后的气体比率一般大于 4,表明存在大量游离氨。因此,估计减少氨气不会有效抑制硝酸盐的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1