{"title":"Hydrocarbon Traps for the Air Intake System: Component Test Rig and SHED Test Procedure for Determining Their Efficiencies","authors":"Matthias Brunnermeier","doi":"10.3390/atmos15091128","DOIUrl":null,"url":null,"abstract":"Hydrocarbon traps in the air intake system (AIS) are a common method for controlling evaporative emissions from the air intake path. Several different systems are available, but there is no standard method for determining their efficiencies. Therefore, a component test rig for hydrocarbon traps was developed. Some optimizations were necessary to achieve emission characteristics observed in engine measurements. Using this setup, several measurements were performed on four different hydrocarbon traps. The results were in reasonable agreement with those from engine measurements. Two different hydrocarbon (HC) traps were selected for further studies. In these studies, the repeatability and the dependency of the emission mass level were investigated. Furthermore, the hydrocarbon concentration in the air filter box was determined using point source flame ionization detector (FID) sampling and a metal oxide semiconductor (MOS) sensor. The data showed a correlation with the emission mass determined in a sealed housing emission determination (SHED) test.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"28 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091128","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrocarbon traps in the air intake system (AIS) are a common method for controlling evaporative emissions from the air intake path. Several different systems are available, but there is no standard method for determining their efficiencies. Therefore, a component test rig for hydrocarbon traps was developed. Some optimizations were necessary to achieve emission characteristics observed in engine measurements. Using this setup, several measurements were performed on four different hydrocarbon traps. The results were in reasonable agreement with those from engine measurements. Two different hydrocarbon (HC) traps were selected for further studies. In these studies, the repeatability and the dependency of the emission mass level were investigated. Furthermore, the hydrocarbon concentration in the air filter box was determined using point source flame ionization detector (FID) sampling and a metal oxide semiconductor (MOS) sensor. The data showed a correlation with the emission mass determined in a sealed housing emission determination (SHED) test.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.