Agricultural Drought Monitoring: A Comparative Review of Conventional and Satellite-Based Indices

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-17 DOI:10.3390/atmos15091129
Ali Gholinia, Peyman Abbaszadeh
{"title":"Agricultural Drought Monitoring: A Comparative Review of Conventional and Satellite-Based Indices","authors":"Ali Gholinia, Peyman Abbaszadeh","doi":"10.3390/atmos15091129","DOIUrl":null,"url":null,"abstract":"Drought is a natural hazard that causes significant economic and human losses by creating a persistent lack of precipitation that impacts agriculture and hydrology. It has various characteristics, such as delayed effects and variability across dimensions like severity, spatial extent, and duration, making it difficult to characterize. The agricultural sector is especially susceptible to drought, which is a primary cause of crop failures and poses a significant threat to global food security. To address these risks, it is crucial to develop effective methods for identifying, classifying, and monitoring agricultural drought, thereby aiding in planning and mitigation efforts. Researchers have developed various tools, including agricultural drought indices, to quantify severity levels and determine the onset and evolution of droughts. These tools help in early-stage forecasting and ongoing monitoring of drought conditions. The field has been significantly advanced by remote sensing technology, which now offers high-resolution spatial and temporal data, improving our capacity to monitor and assess agricultural drought. Despite these technological advancements, the unpredictable nature of environmental conditions continues to pose challenges in drought assessment. It remains essential to provide an overview of agricultural drought indices, incorporating both conventional methods and modern remote sensing-based indices used in drought monitoring and assessment.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"17 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091129","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drought is a natural hazard that causes significant economic and human losses by creating a persistent lack of precipitation that impacts agriculture and hydrology. It has various characteristics, such as delayed effects and variability across dimensions like severity, spatial extent, and duration, making it difficult to characterize. The agricultural sector is especially susceptible to drought, which is a primary cause of crop failures and poses a significant threat to global food security. To address these risks, it is crucial to develop effective methods for identifying, classifying, and monitoring agricultural drought, thereby aiding in planning and mitigation efforts. Researchers have developed various tools, including agricultural drought indices, to quantify severity levels and determine the onset and evolution of droughts. These tools help in early-stage forecasting and ongoing monitoring of drought conditions. The field has been significantly advanced by remote sensing technology, which now offers high-resolution spatial and temporal data, improving our capacity to monitor and assess agricultural drought. Despite these technological advancements, the unpredictable nature of environmental conditions continues to pose challenges in drought assessment. It remains essential to provide an overview of agricultural drought indices, incorporating both conventional methods and modern remote sensing-based indices used in drought monitoring and assessment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
农业干旱监测:传统指标与卫星指标的比较评述
干旱是一种自然灾害,会造成持续的降水不足,影响农业和水文,从而造成重大的经济和人员损失。它具有各种特点,如延迟效应和在严重程度、空间范围和持续时间等方面的多变性,因此很难对其进行定性。农业部门尤其容易受到干旱的影响,干旱是农作物歉收的主要原因,对全球粮食安全构成重大威胁。为了应对这些风险,必须开发有效的方法来识别、分类和监测农业干旱,从而帮助规划和缓解工作。研究人员开发了各种工具,包括农业干旱指数,以量化严重程度并确定干旱的发生和演变。这些工具有助于对干旱状况进行早期预测和持续监测。遥感技术大大推进了这一领域的发展,现在它可以提供高分辨率的空间和时间数据,提高了我们监测和评估农业干旱的能力。尽管取得了这些技术进步,但环境条件的不可预测性仍给干旱评估带来挑战。概述农业干旱指数仍然至关重要,其中既包括传统方法,也包括用于干旱监测和评估的基于遥感技术的现代指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1