{"title":"Application of an Empirical Model to Improve Maximum Value Predictions in CFD-RANS: Insights from Four Scientific Domains","authors":"George Efthimiou","doi":"10.3390/atmos15091124","DOIUrl":null,"url":null,"abstract":"This study introduces an empirical model designed to predict the maximum values of time-dependent data across four turbulence-related fields: hydrogen combustion in renewable energy systems, urban microclimate effects on cultural heritage, shipping emissions, and road vehicle emissions. The model, which is based on the mean, standard deviation, and integral time scale, employs two parameters: a fixed exponent ‘ν’ (0.3) reflecting time scale sensitivity, and a variable parameter ‘b’ that accounts for application-specific uncertainties. Integrated into the Computational Fluid Dynamics (CFD) framework, specifically the Reynolds-Averaged Navier–Stokes (RANS) methodology, the model addresses the RANS approach’s limitation in predicting extreme values due to its inherent averaging process. By incorporating the empirical model, this study enhances RANS simulations’ ability to predict critical values, such as peak hydrogen concentrations and maximum urban wind speeds, which is essential for safety and reliability assessments. Validation against experimental and numerical data across the four fields demonstrates strong agreement, highlighting the model’s potential to improve CFD-RANS predictions of extreme events. This advancement offers significant implications for future CFD-RANS applications, particularly in scenarios demanding fast and reliable maximum value predictions.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"12 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091124","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces an empirical model designed to predict the maximum values of time-dependent data across four turbulence-related fields: hydrogen combustion in renewable energy systems, urban microclimate effects on cultural heritage, shipping emissions, and road vehicle emissions. The model, which is based on the mean, standard deviation, and integral time scale, employs two parameters: a fixed exponent ‘ν’ (0.3) reflecting time scale sensitivity, and a variable parameter ‘b’ that accounts for application-specific uncertainties. Integrated into the Computational Fluid Dynamics (CFD) framework, specifically the Reynolds-Averaged Navier–Stokes (RANS) methodology, the model addresses the RANS approach’s limitation in predicting extreme values due to its inherent averaging process. By incorporating the empirical model, this study enhances RANS simulations’ ability to predict critical values, such as peak hydrogen concentrations and maximum urban wind speeds, which is essential for safety and reliability assessments. Validation against experimental and numerical data across the four fields demonstrates strong agreement, highlighting the model’s potential to improve CFD-RANS predictions of extreme events. This advancement offers significant implications for future CFD-RANS applications, particularly in scenarios demanding fast and reliable maximum value predictions.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.