MADAS: A Python framework for assessing similarity in materials-science data

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-09-19 DOI:10.1039/d4dd00258j
Martin Kuban, Santiago Rigamonti, Claudia Draxl
{"title":"MADAS: A Python framework for assessing similarity in materials-science data","authors":"Martin Kuban, Santiago Rigamonti, Claudia Draxl","doi":"10.1039/d4dd00258j","DOIUrl":null,"url":null,"abstract":"Computational materials science produces large quantities of data, both in terms of high-throughput calculations and individual studies. Extracting knowledge from this large and heterogeneous pool of data is challenging due to the wide variety of computational methods and approximations, resulting in significant veracity in the sheer amount of available data. One way of dealing with the problem is using similarity measures to group data, but also to understand where possible differences may come from. Here, we present MADAS, a Python framework for computing similarity relations between material properties. It can be used to automate the download of data from various sources, compute descriptors and similarities between materials, analyze the relationship between materials through their properties, and can incorporate a variety of existing machine learning methods. We explain the architecture of the package and demonstrate its power with representative examples.","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":"51 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4dd00258j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Computational materials science produces large quantities of data, both in terms of high-throughput calculations and individual studies. Extracting knowledge from this large and heterogeneous pool of data is challenging due to the wide variety of computational methods and approximations, resulting in significant veracity in the sheer amount of available data. One way of dealing with the problem is using similarity measures to group data, but also to understand where possible differences may come from. Here, we present MADAS, a Python framework for computing similarity relations between material properties. It can be used to automate the download of data from various sources, compute descriptors and similarities between materials, analyze the relationship between materials through their properties, and can incorporate a variety of existing machine learning methods. We explain the architecture of the package and demonstrate its power with representative examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MADAS:评估材料科学数据相似性的 Python 框架
计算材料科学产生了大量数据,包括高通量计算和单项研究。由于计算方法和近似方法种类繁多,导致大量可用数据的真实性非常高,因此从这一庞大的异构数据池中提取知识具有挑战性。解决这一问题的方法之一是使用相似性度量对数据进行分组,同时了解可能存在的差异。在此,我们介绍 MADAS,一个用于计算材料属性之间相似性关系的 Python 框架。它可用于自动下载各种来源的数据,计算材料之间的描述符和相似性,通过材料属性分析材料之间的关系,并可结合各种现有的机器学习方法。我们将解释软件包的架构,并通过具有代表性的示例展示其强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials. Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1