{"title":"Mechanisms of Lipid-Mediated Regulation of the Pore-Forming Activity of Antimicrobial Agents: Studies on Planar Lipid Bilayers","authors":"S. S. Efimova, O. S. Ostroumova","doi":"10.1134/S1990747824700247","DOIUrl":null,"url":null,"abstract":"<p>Planar lipid bilayers are unique tools designed for modeling cell membranes and electrophysiological studies of ion channels embedded in them. Such model systems were invented to intentionally limit the complexity and multicomponent nature of cell membranes in order to analyze in detail the processes occurring there under well-controlled experimental conditions. Planar lipid bilayers make it possible to record single conduction events with a measured current of the order of a tenth of a picoampere. The relative simplicity of the method, the possibility of observing single molecular events and the high reproducibility of the results determine the unprecedented effectiveness of using planar lipid bilayers to identify key physical and chemical factors responsible for the regulation of the functioning of ion channels. This review is a collection of published data on the mechanisms of regulation of ion channels associated with the lipid microenvironment formed by various antimicrobial agents. The analysis allows us to consider lipids as molecular chaperones that ensure the formation of pores in targeted membranes by antimicrobial agents.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 3","pages":"257 - 273"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747824700247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Planar lipid bilayers are unique tools designed for modeling cell membranes and electrophysiological studies of ion channels embedded in them. Such model systems were invented to intentionally limit the complexity and multicomponent nature of cell membranes in order to analyze in detail the processes occurring there under well-controlled experimental conditions. Planar lipid bilayers make it possible to record single conduction events with a measured current of the order of a tenth of a picoampere. The relative simplicity of the method, the possibility of observing single molecular events and the high reproducibility of the results determine the unprecedented effectiveness of using planar lipid bilayers to identify key physical and chemical factors responsible for the regulation of the functioning of ion channels. This review is a collection of published data on the mechanisms of regulation of ion channels associated with the lipid microenvironment formed by various antimicrobial agents. The analysis allows us to consider lipids as molecular chaperones that ensure the formation of pores in targeted membranes by antimicrobial agents.
期刊介绍:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.