Maciej Kamiński,Amelia Chyb,Kevin D Matson,Piotr Minias
{"title":"Constitutive innate immune defenses in relation to urbanization and population density in an urban bird, the feral pigeon Columba livia domestica.","authors":"Maciej Kamiński,Amelia Chyb,Kevin D Matson,Piotr Minias","doi":"10.1111/1749-4877.12899","DOIUrl":null,"url":null,"abstract":"Urbanization processes modulate the immunological challenges faced by animals. Urban habitat transformations reshape pathogen diversity and abundance, while high population density-common in urban exploiter species-promotes disease transmission. Responses to urbanization may include adaptive adjustments of constitutive innate immune defenses (e.g. complement system and natural antibodies [NAbs]), which serve as first-line protection against infections. Here, we investigated associations of habitat urbanization and host population density with complement and NAbs in an urban bird, the feral pigeon Columba livia domestica. To do so, we employed the hemolysis-hemagglutination assay to analyze nearly 200 plasma samples collected across urbanization and pigeon population density gradients in five major cities in Poland. We found a negative association between urbanization score and hemagglutination (i.e. NAbs activity), but not hemolysis (i.e. complement activity), indicating either immunosuppression or adaptive downregulation of this immune defense in highly transformed urban landscape. Population density was not significantly related to either immune parameter, providing no evidence for density-dependent modulation of immune defenses. At the same time, there was a negative association of hemolysis with condition (scaled mass index), suggesting resource allocation trade-offs or contrasting effects of the urban environment on immune defenses and body condition. The results demonstrate that habitat structure can be an important factor shaping the immune defenses of the feral pigeon, although these associations were not mediated by variation in population density. Our study highlights the complexity of the links between immune defenses in wildlife and urbanization and reinforces the need for comprehensive ecoimmunological studies on urban animals.","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"27 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12899","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Urbanization processes modulate the immunological challenges faced by animals. Urban habitat transformations reshape pathogen diversity and abundance, while high population density-common in urban exploiter species-promotes disease transmission. Responses to urbanization may include adaptive adjustments of constitutive innate immune defenses (e.g. complement system and natural antibodies [NAbs]), which serve as first-line protection against infections. Here, we investigated associations of habitat urbanization and host population density with complement and NAbs in an urban bird, the feral pigeon Columba livia domestica. To do so, we employed the hemolysis-hemagglutination assay to analyze nearly 200 plasma samples collected across urbanization and pigeon population density gradients in five major cities in Poland. We found a negative association between urbanization score and hemagglutination (i.e. NAbs activity), but not hemolysis (i.e. complement activity), indicating either immunosuppression or adaptive downregulation of this immune defense in highly transformed urban landscape. Population density was not significantly related to either immune parameter, providing no evidence for density-dependent modulation of immune defenses. At the same time, there was a negative association of hemolysis with condition (scaled mass index), suggesting resource allocation trade-offs or contrasting effects of the urban environment on immune defenses and body condition. The results demonstrate that habitat structure can be an important factor shaping the immune defenses of the feral pigeon, although these associations were not mediated by variation in population density. Our study highlights the complexity of the links between immune defenses in wildlife and urbanization and reinforces the need for comprehensive ecoimmunological studies on urban animals.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations