Physiological control for left ventricular assist devices based on deep reinforcement learning

IF 2.2 3区 医学 Q3 ENGINEERING, BIOMEDICAL Artificial organs Pub Date : 2024-09-18 DOI:10.1111/aor.14845
Diego Fernández‐Zapico, Thijs Peirelinck, Geert Deconinck, Dirk W. Donker, Libera Fresiello
{"title":"Physiological control for left ventricular assist devices based on deep reinforcement learning","authors":"Diego Fernández‐Zapico, Thijs Peirelinck, Geert Deconinck, Dirk W. Donker, Libera Fresiello","doi":"10.1111/aor.14845","DOIUrl":null,"url":null,"abstract":"BackgroundThe improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload‐based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm.MethodsThe deep reinforcement learning control is built upon data derived from a deterministic high‐fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end‐systolic elastance, and left ventricular end‐systolic elastance, to replicate realistic inter‐ and intra‐patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end‐diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta.ResultsThe results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end‐diastolic volume (<jats:italic>EDV</jats:italic>), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively.ConclusionThis work implements a deep reinforcement learning controller in a high‐fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of <jats:italic>EDV</jats:italic> stability, when compared to a constant speed LVAD strategy.","PeriodicalId":8450,"journal":{"name":"Artificial organs","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/aor.14845","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundThe improvement of controllers of left ventricular assist device (LVAD) technology supporting heart failure (HF) patients has enormous impact, given the high prevalence and mortality of HF in the population. The use of reinforcement learning for control applications in LVAD remains minimally explored. This work introduces a preload‐based deep reinforcement learning control for LVAD based on the proximal policy optimization algorithm.MethodsThe deep reinforcement learning control is built upon data derived from a deterministic high‐fidelity cardiorespiratory simulator exposed to variations of total blood volume, heart rate, systemic vascular resistance, pulmonary vascular resistance, right ventricular end‐systolic elastance, and left ventricular end‐systolic elastance, to replicate realistic inter‐ and intra‐patient variability of patients with a severe HF supported by LVAD. The deep reinforcement learning control obtained in this work is trained to avoid ventricular suction and allow aortic valve opening by using left ventricular pressure signals: end‐diastolic pressure, maximum pressure in the left ventricle (LV), and maximum pressure in the aorta.ResultsThe results show controller obtained in this work, compared to the constant speed LVAD alternative, assures a more stable end‐diastolic volume (EDV), with a standard deviation of 5 mL and 9 mL, respectively, and a higher degree of aortic flow, with an average flow of 1.1 L/min and 0.9 L/min, respectively.ConclusionThis work implements a deep reinforcement learning controller in a high‐fidelity cardiorespiratory simulator, resulting in increases of flow through the aortic valve and increases of EDV stability, when compared to a constant speed LVAD strategy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的左心室辅助设备生理控制
背景鉴于心力衰竭(HF)在人群中的高发病率和高死亡率,改进支持心力衰竭(HF)患者的左心室辅助装置(LVAD)技术的控制器具有巨大影响。在 LVAD 控制应用中使用强化学习的探索仍然很少。这项研究基于近端策略优化算法,为 LVAD 引入了基于预负荷的深度强化学习控制。方法深度强化学习控制建立在一个确定性高保真心肺模拟器的数据基础上,该模拟器暴露在总血量、心率、全身血管阻力、肺血管阻力、右心室收缩末期弹性和左心室收缩末期弹性的变化中,以复制由 LVAD 支持的重度 HF 患者在患者间和患者内的真实变化。结果表明,与恒速 LVAD 替代方案相比,本研究中获得的控制器可确保更稳定的舒张末期容积(EDV),标准偏差分别为 5 mL 和 9 mL,以及更高的主动脉流量,平均流量分别为 1.1 L/min 和 0.9 L/min。结论这项研究在高保真心肺模拟器中实施了深度强化学习控制器,与恒速 LVAD 策略相比,增加了通过主动脉瓣的流量,提高了 EDV 的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial organs
Artificial organs 工程技术-工程:生物医学
CiteScore
4.30
自引率
12.50%
发文量
303
审稿时长
4-8 weeks
期刊介绍: Artificial Organs is the official peer reviewed journal of The International Federation for Artificial Organs (Members of the Federation are: The American Society for Artificial Internal Organs, The European Society for Artificial Organs, and The Japanese Society for Artificial Organs), The International Faculty for Artificial Organs, the International Society for Rotary Blood Pumps, The International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation. Artificial Organs publishes original research articles dealing with developments in artificial organs applications and treatment modalities and their clinical applications worldwide. Membership in the Societies listed above is not a prerequisite for publication. Articles are published without charge to the author except for color figures and excess page charges as noted.
期刊最新文献
Recognition of psychological comorbidity and psychotherapeutic treatment status of ventricular assist device patients. Concomitant tricuspid valve surgery in patients with significant tricuspid regurgitation undergoing left ventricular assist device implantation: A systematic review and meta-analysis. Monitoring Berlin Heart EXCOR by computer vision: A preliminary implementation and evaluation. High-intensity interval training with functional electrical stimulation cycling for incomplete spinal cord injury patients: A pilot feasibility study. Design and simulation of a microfluidics-based artificial glomerular ultrafiltration unit to reduce cell-induced fouling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1