{"title":"Towards Programmable Backscatter Radio Design for Heterogeneous Wireless Networks","authors":"Xiuzhen Guo;Yuan He;Jiacheng Zhang;Yunhao Liu;Longfei Shangguan","doi":"10.1109/TNET.2024.3454095","DOIUrl":null,"url":null,"abstract":"This paper presents RF-Transformer, a unified backscatter radio hardware abstraction that allows a low-power IoT device to directly communicate with heterogeneous wireless receivers. Unlike existing backscatter systems that are tailored to a specific wireless communication protocol, RF-Transformer provides a programmable interface to the micro-controller, allowing IoT devices to synthesize different types of protocol-compliant backscatter signals in the PHY layer. By leveraging the nonlinear characteristics of the negative impedance, RF-Transformer also achieves a cross-frequency backscatter design that enables IoT devices in harmonic frequency bands to communicate with each other. We implement a PCB prototype of RF-Transformer on 2.4 GHz ISM band and conduct extensive experiments. We leverage the software defined platform USRP to transmit the carrier signal and receive the backscatter signal to verify the efficacy of our design. Our extensive field studies show that RF-Transformer achieves 23.8 Mbps, 247.1 Kbps, 986.5 Kbps, and 27.3 Kbps throughput when generating standard Wi-Fi, ZigBee, Bluetooth, and LoRa signals.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5020-5032"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10681497/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents RF-Transformer, a unified backscatter radio hardware abstraction that allows a low-power IoT device to directly communicate with heterogeneous wireless receivers. Unlike existing backscatter systems that are tailored to a specific wireless communication protocol, RF-Transformer provides a programmable interface to the micro-controller, allowing IoT devices to synthesize different types of protocol-compliant backscatter signals in the PHY layer. By leveraging the nonlinear characteristics of the negative impedance, RF-Transformer also achieves a cross-frequency backscatter design that enables IoT devices in harmonic frequency bands to communicate with each other. We implement a PCB prototype of RF-Transformer on 2.4 GHz ISM band and conduct extensive experiments. We leverage the software defined platform USRP to transmit the carrier signal and receive the backscatter signal to verify the efficacy of our design. Our extensive field studies show that RF-Transformer achieves 23.8 Mbps, 247.1 Kbps, 986.5 Kbps, and 27.3 Kbps throughput when generating standard Wi-Fi, ZigBee, Bluetooth, and LoRa signals.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.