Quantitative Portfolio Management: Review and Outlook

IF 2.3 3区 数学 Q1 MATHEMATICS Mathematics Pub Date : 2024-09-17 DOI:10.3390/math12182897
Michael Senescall, Rand Kwong Yew Low
{"title":"Quantitative Portfolio Management: Review and Outlook","authors":"Michael Senescall, Rand Kwong Yew Low","doi":"10.3390/math12182897","DOIUrl":null,"url":null,"abstract":"This survey aims to provide insightful and objective perspectives on the research history of quantitative portfolio management strategies with suggestions for the future of research. The relevant literature can be clustered into four broad themes: portfolio optimization, risk-parity, style integration, and machine learning. Portfolio optimization attempts to find the optimal trade-off of future returns per unit of risk. Risk-parity attempts to match the exposure of various asset classes such that no single asset class dominates portfolio risk. Style integration combines risk factors on a security level such that rebalancing differences cancel out. Finally, machine learning utilizes large arrays of tunable parameters to predict future asset behavior and solve non-convex optimization problems. We conclude that machine learning will likely be the focus of future research.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"20 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182897","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This survey aims to provide insightful and objective perspectives on the research history of quantitative portfolio management strategies with suggestions for the future of research. The relevant literature can be clustered into four broad themes: portfolio optimization, risk-parity, style integration, and machine learning. Portfolio optimization attempts to find the optimal trade-off of future returns per unit of risk. Risk-parity attempts to match the exposure of various asset classes such that no single asset class dominates portfolio risk. Style integration combines risk factors on a security level such that rebalancing differences cancel out. Finally, machine learning utilizes large arrays of tunable parameters to predict future asset behavior and solve non-convex optimization problems. We conclude that machine learning will likely be the focus of future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量化投资组合管理:回顾与展望
本调查旨在对量化投资组合管理策略的研究历史提供有见地的客观观点,并对未来的研究提出建议。相关文献可归纳为四大主题:投资组合优化、风险平价、风格整合和机器学习。投资组合优化试图找到单位风险未来收益的最佳权衡。风险均等试图匹配各类资产的风险敞口,从而避免单一资产类别主导投资组合风险。风格整合在证券层面上结合风险因素,从而消除再平衡差异。最后,机器学习利用大量可调参数阵列来预测未来资产行为,并解决非凸优化问题。我们的结论是,机器学习很可能是未来研究的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics
Mathematics Mathematics-General Mathematics
CiteScore
4.00
自引率
16.70%
发文量
4032
审稿时长
21.9 days
期刊介绍: Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.
期刊最新文献
Estimating the Relative Risks of Spatial Clusters Using a Predictor-Corrector Method. A Privacy-Preserving Electromagnetic-Spectrum-Sharing Trading Scheme Based on ABE and Blockchain Three Weak Solutions for a Critical Non-Local Problem with Strong Singularity in High Dimension LMKCDEY Revisited: Speeding Up Blind Rotation with Signed Evaluation Keys A New Instance Segmentation Model for High-Resolution Remote Sensing Images Based on Edge Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1