Jingtian Zhang, Wuqian Guo, Haojie Xu, Qingshun Fan, Linjie Wei, Xianmei Zhao, Zhihua Sun and Junhua Luo
{"title":"A polar multilayered two-dimensional hybrid perovskite for self-driven X-ray photodetection with a low detection limit†","authors":"Jingtian Zhang, Wuqian Guo, Haojie Xu, Qingshun Fan, Linjie Wei, Xianmei Zhao, Zhihua Sun and Junhua Luo","doi":"10.1039/D4QM00582A","DOIUrl":null,"url":null,"abstract":"<p >Recently, two-dimensional (2D) organic–inorganic hybrid perovskites (OIHPs) with the general chemical formula of (A)<small><sub>2</sub></small>(B)<small><sub><em>n</em>−1</sub></small>PbX<small><sub>3<em>n</em>+1</sub></small> have garnered significant interest in optics and optoelectronics. Presently, the B-site cations in the perovskite cage are confined exclusively to small-size cations (such as Cs<small><sup>+</sup></small> and CH<small><sub>3</sub></small>NH<small><sub>3</sub></small><small><sup>+</sup></small>), while high-quality crystals of 2D OIHPs containing larger cations (<em>e.g.</em>, guanidinium, G<small><sup>+</sup></small>) remain quite scarce for detecting X-ray application. Here, we have successfully fabricated a nanoGray-responsive self-driven X-ray detector using single crystals of a polar 2D hybrid perovskite, IA<small><sub>2</sub></small>GPb<small><sub>2</sub></small>I<small><sub>7</sub></small> (where IA is isoamylammonium), of which G cations are confined inside the perovskite cages. The dynamic freedom of IA<small><sup>+</sup></small> and G<small><sup>+</sup></small> organic cations' molecular movements supplies the impetus for the creation of electrical polarization. Upon X-ray radiation, a bulk photovoltaic voltage of 0.74 V is generated due to the spontaneous electric polarization, which affords the source for self-driven detection. The grown high-quality inch-size crystals show high resistivity (1.82 × 10<small><sup>10</sup></small> Ω cm) and huge carrier migration lifetime product (<em>μτ</em> = 2.7 × 10<small><sup>−3</sup></small> cm<small><sup>−2</sup></small> V<small><sup>−1</sup></small>). As expected, an X-ray detector fabricated on high-quality crystals enables dramatic X-ray detection performances under 0 V, boasting an excellent sensitivity of 115.43 μC Gy<small><sub>air</sub></small><small><sup>−1</sup></small> cm<small><sup>−2</sup></small> and an impressively low detection limit of 9.6 nGy<small><sub>air</sub></small> s<small><sup>−1</sup></small>. The detection limit is superior to many known perovskite X-ray detectors. The investigation focuses on the rational design and engineering of new hybrid perovskites toward high-demand self-powered X-ray detectors.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/qm/d4qm00582a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00582a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, two-dimensional (2D) organic–inorganic hybrid perovskites (OIHPs) with the general chemical formula of (A)2(B)n−1PbX3n+1 have garnered significant interest in optics and optoelectronics. Presently, the B-site cations in the perovskite cage are confined exclusively to small-size cations (such as Cs+ and CH3NH3+), while high-quality crystals of 2D OIHPs containing larger cations (e.g., guanidinium, G+) remain quite scarce for detecting X-ray application. Here, we have successfully fabricated a nanoGray-responsive self-driven X-ray detector using single crystals of a polar 2D hybrid perovskite, IA2GPb2I7 (where IA is isoamylammonium), of which G cations are confined inside the perovskite cages. The dynamic freedom of IA+ and G+ organic cations' molecular movements supplies the impetus for the creation of electrical polarization. Upon X-ray radiation, a bulk photovoltaic voltage of 0.74 V is generated due to the spontaneous electric polarization, which affords the source for self-driven detection. The grown high-quality inch-size crystals show high resistivity (1.82 × 1010 Ω cm) and huge carrier migration lifetime product (μτ = 2.7 × 10−3 cm−2 V−1). As expected, an X-ray detector fabricated on high-quality crystals enables dramatic X-ray detection performances under 0 V, boasting an excellent sensitivity of 115.43 μC Gyair−1 cm−2 and an impressively low detection limit of 9.6 nGyair s−1. The detection limit is superior to many known perovskite X-ray detectors. The investigation focuses on the rational design and engineering of new hybrid perovskites toward high-demand self-powered X-ray detectors.
最近,二维(2D)有机-无机杂化包晶(OIHPs)在光学和光电子学领域引起了极大的兴趣。目前,包晶石笼中的 "包晶石 "分子仅限于小尺寸阳离子(如 Cs+ 和 CH3NH3+),而含有较大阳离子(如胍,G+)作为包晶石的二维有机无机杂化包晶石的高质量晶体在探测 X 射线应用方面仍然相当稀缺。在这里,我们利用极性二维杂化包晶--IA2GPb2I7(其中 IA 为异戊基铵)单晶成功制备了纳米灰色响应自驱动 X 射线探测器,其中 G 阳离子被限制在包晶笼子内。IA+ 和 G+ 有机阳离子分子运动的动态自由度为电极化的产生提供了动力。在 X 射线照射下,自发的电极化产生了 0.74 V 的体光伏电压,为自驱动探测提供了源泉。生长出的高质量英寸大小晶体显示出高电阻率(1.82 × 1010 Ω cm)和巨大的载流子迁移寿命积(μτ = 2.7×10-3 cm-2 V-1)。正如预期的那样,在高质量晶体上制造的 X 射线探测器能够在 0 V 以下实现显著的 X 射线探测性能,具有 115.43 μC Gyair-1 cm-2 的出色灵敏度和 9.6 nGyair s-1 的超低探测极限。探测极限优于许多已知的过氧化物 X 射线探测器。这项研究的重点是合理设计和制造新型混合包晶,以实现高要求的自供电 X 射线探测器。
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.