Mathematical Formulations for Predicting Pressure Drop in Solid–Liquid Slurry Flow through a Straight Pipe Using Computational Modeling

IF 2.3 3区 数学 Q1 MATHEMATICS Mathematics Pub Date : 2024-09-15 DOI:10.3390/math12182879
Tanuj Joshi, Abhinav Gupta, Om Parkash, Ralph Kristoffer B. Gallegos, Nay Lin Oo, Gopal Krishan
{"title":"Mathematical Formulations for Predicting Pressure Drop in Solid–Liquid Slurry Flow through a Straight Pipe Using Computational Modeling","authors":"Tanuj Joshi, Abhinav Gupta, Om Parkash, Ralph Kristoffer B. Gallegos, Nay Lin Oo, Gopal Krishan","doi":"10.3390/math12182879","DOIUrl":null,"url":null,"abstract":"The study establishes two mathematical formulations to predict the pressure drop in a solid–liquid slurry flowing through a straight pipe. Employing the Eulerian–Eulerian RNG k-ε model, the computational investigation uses water as the carrier fluid and glass beads as solid particles. The analysis spans various particle sizes (d50 = 75–175 μm), volumetric concentrations (Cvf = 10–50%), and velocities (Vm = 1–5 m/s). The first model, developed using the MATLAB curve-fitting tool, is complemented by a second empirical equation derived through non-polynomial mathematical formulation. Results from both models are validated against existing experimental and computational data, demonstrating accurate predictions for d50 = 75–175 µm particles within a Reynolds number range of 20,000 ≤ Re ≤ 320,000.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"24 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182879","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The study establishes two mathematical formulations to predict the pressure drop in a solid–liquid slurry flowing through a straight pipe. Employing the Eulerian–Eulerian RNG k-ε model, the computational investigation uses water as the carrier fluid and glass beads as solid particles. The analysis spans various particle sizes (d50 = 75–175 μm), volumetric concentrations (Cvf = 10–50%), and velocities (Vm = 1–5 m/s). The first model, developed using the MATLAB curve-fitting tool, is complemented by a second empirical equation derived through non-polynomial mathematical formulation. Results from both models are validated against existing experimental and computational data, demonstrating accurate predictions for d50 = 75–175 µm particles within a Reynolds number range of 20,000 ≤ Re ≤ 320,000.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用计算建模预测固液浆液流经直管时压降的数学公式
该研究建立了两种数学公式来预测流经直管的固液浆液的压降。计算研究采用欧拉-欧拉 RNG k-ε 模型,以水为载液,玻璃珠为固体颗粒。分析跨越了各种颗粒尺寸(d50 = 75-175 μm)、体积浓度(Cvf = 10-50%)和速度(Vm = 1-5 m/s)。第一个模型是利用 MATLAB 曲线拟合工具开发的,第二个模型是通过非多项式数学公式推导出的经验方程的补充。两个模型的结果都与现有的实验和计算数据进行了验证,在雷诺数 20,000 ≤ Re ≤ 320,000 的范围内对 d50 = 75-175 µm 的颗粒进行了精确预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics
Mathematics Mathematics-General Mathematics
CiteScore
4.00
自引率
16.70%
发文量
4032
审稿时长
21.9 days
期刊介绍: Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.
期刊最新文献
A Privacy-Preserving Electromagnetic-Spectrum-Sharing Trading Scheme Based on ABE and Blockchain Three Weak Solutions for a Critical Non-Local Problem with Strong Singularity in High Dimension LMKCDEY Revisited: Speeding Up Blind Rotation with Signed Evaluation Keys A New Instance Segmentation Model for High-Resolution Remote Sensing Images Based on Edge Processing AssocKD: An Association-Aware Knowledge Distillation Method for Document-Level Event Argument Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1