Effects of Gradual Spatial and Temporal Cues Provided by Synchronized Walking Avatar on Elderly Gait

Q1 Mathematics Applied Sciences Pub Date : 2024-09-18 DOI:10.3390/app14188374
Dane A. L. Miller, Hirotaka Uchitomi, Yoshihiro Miyake
{"title":"Effects of Gradual Spatial and Temporal Cues Provided by Synchronized Walking Avatar on Elderly Gait","authors":"Dane A. L. Miller, Hirotaka Uchitomi, Yoshihiro Miyake","doi":"10.3390/app14188374","DOIUrl":null,"url":null,"abstract":"Aging often leads to elderly gait characterized by slower speeds, shorter strides, and increased cycle; improving gait can significantly enhance the quality of life. Early gait training can help reduce gait impairment later on. Augmented reality (AR) technologies have shown promise in gait training, providing real-time feedback and guided exercises to improve walking patterns and gait parameters. The aim of this study was to observe the effects of gradual spatial and temporal cues provided by a synchronized walking avatar on the gait of elderly participants. This experiment involved 19 participants aged over 70 years, who walked while interacting with a synchronized walking avatar that provided audiovisual spatial and temporal cues. Spatial cueing and temporal cueing were provided through distance changes and phase difference changes, respectively. The WalkMate AR system was used to synchronize the avatar’s walking cycle with the participants’, delivering auditory cues matched to foot contacts. This study assessed the immediate and carry-over effects of changes in distance and phase difference on stride length, cycle time, and gait speed. The results indicate that gradual spatial and temporal cueing significantly influences elderly gait parameters, with potential applications in gait rehabilitation and training.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Aging often leads to elderly gait characterized by slower speeds, shorter strides, and increased cycle; improving gait can significantly enhance the quality of life. Early gait training can help reduce gait impairment later on. Augmented reality (AR) technologies have shown promise in gait training, providing real-time feedback and guided exercises to improve walking patterns and gait parameters. The aim of this study was to observe the effects of gradual spatial and temporal cues provided by a synchronized walking avatar on the gait of elderly participants. This experiment involved 19 participants aged over 70 years, who walked while interacting with a synchronized walking avatar that provided audiovisual spatial and temporal cues. Spatial cueing and temporal cueing were provided through distance changes and phase difference changes, respectively. The WalkMate AR system was used to synchronize the avatar’s walking cycle with the participants’, delivering auditory cues matched to foot contacts. This study assessed the immediate and carry-over effects of changes in distance and phase difference on stride length, cycle time, and gait speed. The results indicate that gradual spatial and temporal cueing significantly influences elderly gait parameters, with potential applications in gait rehabilitation and training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同步行走头像提供的渐进空间和时间线索对老年人步态的影响
衰老通常会导致老年人步态特征为速度变慢、步幅变短和周期增加;改善步态可以显著提高生活质量。早期的步态训练有助于减少日后的步态障碍。增强现实(AR)技术在步态训练中大有可为,它能提供实时反馈和指导练习,以改善行走模式和步态参数。本研究的目的是观察同步行走化身提供的渐进空间和时间线索对老年参与者步态的影响。这项实验有 19 名 70 岁以上的参与者参加,他们一边行走一边与提供视听空间和时间提示的同步行走化身互动。空间提示和时间提示分别通过距离变化和相位差变化提供。WalkMate AR 系统用于使虚拟人的行走周期与参与者的行走周期同步,并提供与脚部接触相匹配的听觉提示。这项研究评估了距离和相位差变化对步幅、周期时间和步速的直接影响和延续影响。结果表明,渐进的空间和时间提示会显著影响老年人的步态参数,在步态康复和训练中具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Sciences
Applied Sciences Mathematics-Applied Mathematics
CiteScore
6.40
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.
期刊最新文献
The Effectiveness of Exercise Programs on Balance, Functional Ability, Quality of Life, and Depression in Progressive Supranuclear Palsy: A Case Study Application of Historical Comprehensive Multimodal Transportation Data for Testing the Commuting Time Paradox: Evidence from the Portland, OR Region Real-Time Optimization of Ancillary Service Allocation in Renewable Energy Microgrids Using Virtual Load Exploring the Association between Pro-Inflammation and the Early Diagnosis of Alzheimer’s Disease in Buccal Cells Using Immunocytochemistry and Machine Learning Techniques HumanEnerg Hotspot: Conceptual Design of an Agile Toolkit for Human Energy Reinforcement in Industry 5.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1