Shaochun Qu, Ruiqi Guo, Zijian Cao, Jiawei Liu, Baolong Su, Minghao Liu
{"title":"An Effective Training Method for Counterfactual Multi-Agent Policy Network Based on Differential Evolution Algorithm","authors":"Shaochun Qu, Ruiqi Guo, Zijian Cao, Jiawei Liu, Baolong Su, Minghao Liu","doi":"10.3390/app14188383","DOIUrl":null,"url":null,"abstract":"Due to the advantages of a centralized critic to estimate the Q-function value and decentralized actors to optimize the agents’ policies, counterfactual multi-agent (COMA) stands out in most multi-agent reinforcement learning (MARL) algorithms. The sharing of policy parameters can improve sampling efficiency and learning effectiveness, but it may lead to a lack of policy diversity. Hence, to balance parameter sharing and diversity among agents in COMA has been a persistent research topic. In this paper, an effective training method for a COMA policy network based on a differential evolution (DE) algorithm is proposed, named DE-COMA. DE-COMA introduces individuals in a population as computational units to construct the policy network with operations such as mutation, crossover, and selection. The average return of DE-COMA is set as the fitness function, and the best individual of policy network will be chosen for the next generation. By maintaining better parameter sharing to enhance parameter diversity, multi-agent strategies will become more exploratory. To validate the effectiveness of DE-COMA, experiments were conducted in the StarCraft II environment with 2s_vs_1sc, 2s3z, 3m, and 8m battle scenarios. Experimental results demonstrate that DE-COMA significantly outperforms the traditional COMA and most other multi-agent reinforcement learning algorithms in terms of win rate and convergence speed.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the advantages of a centralized critic to estimate the Q-function value and decentralized actors to optimize the agents’ policies, counterfactual multi-agent (COMA) stands out in most multi-agent reinforcement learning (MARL) algorithms. The sharing of policy parameters can improve sampling efficiency and learning effectiveness, but it may lead to a lack of policy diversity. Hence, to balance parameter sharing and diversity among agents in COMA has been a persistent research topic. In this paper, an effective training method for a COMA policy network based on a differential evolution (DE) algorithm is proposed, named DE-COMA. DE-COMA introduces individuals in a population as computational units to construct the policy network with operations such as mutation, crossover, and selection. The average return of DE-COMA is set as the fitness function, and the best individual of policy network will be chosen for the next generation. By maintaining better parameter sharing to enhance parameter diversity, multi-agent strategies will become more exploratory. To validate the effectiveness of DE-COMA, experiments were conducted in the StarCraft II environment with 2s_vs_1sc, 2s3z, 3m, and 8m battle scenarios. Experimental results demonstrate that DE-COMA significantly outperforms the traditional COMA and most other multi-agent reinforcement learning algorithms in terms of win rate and convergence speed.
期刊介绍:
APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.