Effect of Ozonized Water against Pathogenic Bacteria and Filamentous Fungi on Stainless Steel

Q1 Mathematics Applied Sciences Pub Date : 2024-09-18 DOI:10.3390/app14188392
Elettra Berni, Chiara Moroni, Massimo Cigarini, Demetrio Brindani, Claudia Catelani Cardoso, Davide Imperiale
{"title":"Effect of Ozonized Water against Pathogenic Bacteria and Filamentous Fungi on Stainless Steel","authors":"Elettra Berni, Chiara Moroni, Massimo Cigarini, Demetrio Brindani, Claudia Catelani Cardoso, Davide Imperiale","doi":"10.3390/app14188392","DOIUrl":null,"url":null,"abstract":"Ozone is a molecule that has gained increasing interest in recent years by food industries for sanitization of food-grade surfaces. Compared to chemical sanitizers such as chlorine, hydrogen peroxide, or peracetic acid, ozone shows undeniable advantages, such as the absence of by-products that should affect human health or the possibility of generating it when needed. Therefore, the aim of this paper was the assessment of the resistance to ozonized water of two pathogenic bacteria (Listeria monocytogenes, Salmonella) and of three airborne food-spoiling fungi (Aspergillus brasiliensis, Hyphopichia burtonii, and Penicillium nordicum) inoculated on stainless steel tiles and treated in static conditions with 1 to 6 mg L−1 (pathogens) or 8.5 mg L−1 (filamentous fungi). Ozonized water gave different results based on the tested microorganisms: pathogenic bacteria proved markedly more sensible to ozone than filamentous fungi, even if great differences were observed at inter- and intra-specific levels for both categories of microorganisms. Nevertheless, the non-linear inactivation kinetics of the studied strains made the calculation of a punctual F-value difficult, so in industrial practice, adequate tailoring of the treatments to be applied, based on the registered extrinsic factors and the industrial bio-burden, would be appropriate.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Ozone is a molecule that has gained increasing interest in recent years by food industries for sanitization of food-grade surfaces. Compared to chemical sanitizers such as chlorine, hydrogen peroxide, or peracetic acid, ozone shows undeniable advantages, such as the absence of by-products that should affect human health or the possibility of generating it when needed. Therefore, the aim of this paper was the assessment of the resistance to ozonized water of two pathogenic bacteria (Listeria monocytogenes, Salmonella) and of three airborne food-spoiling fungi (Aspergillus brasiliensis, Hyphopichia burtonii, and Penicillium nordicum) inoculated on stainless steel tiles and treated in static conditions with 1 to 6 mg L−1 (pathogens) or 8.5 mg L−1 (filamentous fungi). Ozonized water gave different results based on the tested microorganisms: pathogenic bacteria proved markedly more sensible to ozone than filamentous fungi, even if great differences were observed at inter- and intra-specific levels for both categories of microorganisms. Nevertheless, the non-linear inactivation kinetics of the studied strains made the calculation of a punctual F-value difficult, so in industrial practice, adequate tailoring of the treatments to be applied, based on the registered extrinsic factors and the industrial bio-burden, would be appropriate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
臭氧水对不锈钢上致病细菌和丝状真菌的影响
近年来,食品工业对臭氧这种用于食品级表面消毒的分子越来越感兴趣。与氯、过氧化氢或过氧乙酸等化学消毒剂相比,臭氧具有不可否认的优势,如不产生可能影响人体健康的副产品,或可在需要时产生。因此,本文的目的是评估两种致病细菌(单核细胞增生李斯特菌和沙门氏菌)和三种空气传播的食品污染真菌(巴西曲霉、布氏酵母菌和北欧青霉)对臭氧水的耐受性,这些真菌接种在不锈钢瓷砖上,在静态条件下用 1-6 mg L-1 (致病菌)或 8.5 mg L-1 (丝状真菌)处理。根据测试微生物的不同,臭氧水产生了不同的结果:病原菌对臭氧的敏感性明显高于丝状真菌,尽管两类微生物在种间和种内水平上存在很大差异。不过,由于所研究菌株的非线性灭活动力学,很难计算出精确的 F 值,因此在工业实践中,应根据登记的外在因素和工业生物负荷,适当调整要采用的处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Sciences
Applied Sciences Mathematics-Applied Mathematics
CiteScore
6.40
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.
期刊最新文献
The Effectiveness of Exercise Programs on Balance, Functional Ability, Quality of Life, and Depression in Progressive Supranuclear Palsy: A Case Study Application of Historical Comprehensive Multimodal Transportation Data for Testing the Commuting Time Paradox: Evidence from the Portland, OR Region Real-Time Optimization of Ancillary Service Allocation in Renewable Energy Microgrids Using Virtual Load Exploring the Association between Pro-Inflammation and the Early Diagnosis of Alzheimer’s Disease in Buccal Cells Using Immunocytochemistry and Machine Learning Techniques HumanEnerg Hotspot: Conceptual Design of an Agile Toolkit for Human Energy Reinforcement in Industry 5.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1