Influence of Initial Secondary Structure on Conformation and Mechanical Properties of Spider Silk Protein Gels

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-09-17 DOI:10.1021/acsbiomaterials.4c00809
Takanori Higashi, Hideyasu Okamura, Takehiro K. Sato, Takashi Morinaga, Ryo Satoh, Yu Suzuki
{"title":"Influence of Initial Secondary Structure on Conformation and Mechanical Properties of Spider Silk Protein Gels","authors":"Takanori Higashi, Hideyasu Okamura, Takehiro K. Sato, Takashi Morinaga, Ryo Satoh, Yu Suzuki","doi":"10.1021/acsbiomaterials.4c00809","DOIUrl":null,"url":null,"abstract":"Recombinant spider silk protein (RSP) is a promising biomaterial for developing high-performance materials independent of fossil fuels. In this study, we investigated the influence of the initial secondary structure of RSPs on the properties of RSP-based hydrogels. By altering the initial structure of RSP to β-sheets (β-RSP), α-helices (α-RSP), and random coils (rc-RSP) through solvent treatment, we compared the structures and mechanical properties of the resulting gels. Solid-state NMR revealed a β-sheet-rich structure in all gels, with the α-RSP gel exhibiting significantly higher strength and Young’s modulus compared to the rc-RSP gel. X-ray diffraction revealed that the α-RSP gel had a unique crystalline structure, distinguishing it from the β-RSP and rc-RSP gels. The different initial secondary structures possibly lead to variations in the crystalline and network structures of the molecular chains within the gels, explaining the superior mechanical properties observed in the α-RSP gels.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c00809","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Recombinant spider silk protein (RSP) is a promising biomaterial for developing high-performance materials independent of fossil fuels. In this study, we investigated the influence of the initial secondary structure of RSPs on the properties of RSP-based hydrogels. By altering the initial structure of RSP to β-sheets (β-RSP), α-helices (α-RSP), and random coils (rc-RSP) through solvent treatment, we compared the structures and mechanical properties of the resulting gels. Solid-state NMR revealed a β-sheet-rich structure in all gels, with the α-RSP gel exhibiting significantly higher strength and Young’s modulus compared to the rc-RSP gel. X-ray diffraction revealed that the α-RSP gel had a unique crystalline structure, distinguishing it from the β-RSP and rc-RSP gels. The different initial secondary structures possibly lead to variations in the crystalline and network structures of the molecular chains within the gels, explaining the superior mechanical properties observed in the α-RSP gels.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
初始二级结构对蜘蛛丝蛋白凝胶构象和机械性能的影响
重组蜘蛛丝蛋白(RSP)是一种很有前途的生物材料,可用于开发不依赖化石燃料的高性能材料。在这项研究中,我们探讨了 RSP 初始二级结构对基于 RSP 的水凝胶性能的影响。通过溶剂处理将 RSP 的初始结构改变为 β-片(β-RSP)、α-螺旋(α-RSP)和无规线圈(rc-RSP),我们比较了所得凝胶的结构和机械性能。固态核磁共振显示所有凝胶都具有富含β片层的结构,与rc-RSP凝胶相比,α-RSP凝胶的强度和杨氏模量明显更高。X 射线衍射显示,α-RSP 凝胶具有独特的晶体结构,有别于 β-RSP 和 rc-RSP 凝胶。不同的初始二级结构可能会导致凝胶中分子链的结晶和网络结构发生变化,从而解释了为什么在 α-RSP 凝胶中观察到了优异的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1