Rossella Capotorto, Vincenzo Ronca, Nicolina Sciaraffa, Gianluca Borghini, Gianluca Di Flumeri, Lorenzo Mezzadri, Alessia Vozzi, Andrea Giorgi, Daniele Germano, Fabio Babiloni, Pietro Aricò
{"title":"Cooperation objective evaluation in aviation: validation and comparison of two novel approaches in simulated environment","authors":"Rossella Capotorto, Vincenzo Ronca, Nicolina Sciaraffa, Gianluca Borghini, Gianluca Di Flumeri, Lorenzo Mezzadri, Alessia Vozzi, Andrea Giorgi, Daniele Germano, Fabio Babiloni, Pietro Aricò","doi":"10.3389/fninf.2024.1409322","DOIUrl":null,"url":null,"abstract":"IntroductionIn operational environments, human interaction and cooperation between individuals are critical to efficiency and safety. These states are influenced by individuals' cognitive and emotional states. Human factor research aims to objectively quantify these states to prevent human error and maintain constant performances, particularly in high-risk settings such as aviation, where human error and performance account for a significant portion of accidents.MethodsThus, this study aimed to evaluate and validate two novel methods for assessing the degree of cooperation among professional pilots engaged in real-flight simulation tasks. In addition, the study aimed to assess the ability of the proposed metrics to differentiate between the expertise levels of operating crews based on their levels of cooperation. Eight crews were involved in the experiments, consisting of four crews of Unexperienced pilots and four crews of Experienced pilots. An expert trainer, simulating air traffic management communication on one side and acting as a subject matter expert on the other, provided external evaluations of the pilots' mental states during the simulation. The two novel approaches introduced in this study were formulated based on circular correlation and mutual information techniques.Results and discussionThe findings demonstrated the possibility of quantifying cooperation levels among pilots during realistic flight simulations. In addition, cooperation time is found to be significantly higher (<jats:italic>p</jats:italic> &lt; 0.05) among Experienced pilots compared to Unexperienced ones. Furthermore, these preliminary results exhibited significant correlations (<jats:italic>p</jats:italic> &lt; 0.05) with subjective and behavioral measures collected every 30 s during the task, confirming their reliability.","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1409322","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionIn operational environments, human interaction and cooperation between individuals are critical to efficiency and safety. These states are influenced by individuals' cognitive and emotional states. Human factor research aims to objectively quantify these states to prevent human error and maintain constant performances, particularly in high-risk settings such as aviation, where human error and performance account for a significant portion of accidents.MethodsThus, this study aimed to evaluate and validate two novel methods for assessing the degree of cooperation among professional pilots engaged in real-flight simulation tasks. In addition, the study aimed to assess the ability of the proposed metrics to differentiate between the expertise levels of operating crews based on their levels of cooperation. Eight crews were involved in the experiments, consisting of four crews of Unexperienced pilots and four crews of Experienced pilots. An expert trainer, simulating air traffic management communication on one side and acting as a subject matter expert on the other, provided external evaluations of the pilots' mental states during the simulation. The two novel approaches introduced in this study were formulated based on circular correlation and mutual information techniques.Results and discussionThe findings demonstrated the possibility of quantifying cooperation levels among pilots during realistic flight simulations. In addition, cooperation time is found to be significantly higher (p < 0.05) among Experienced pilots compared to Unexperienced ones. Furthermore, these preliminary results exhibited significant correlations (p < 0.05) with subjective and behavioral measures collected every 30 s during the task, confirming their reliability.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.