Dominik Just, Tomasz Wasiak, Andrzej Dzienia, Karolina Z. Milowska, Anna Mielańczyk, Dawid Janas
{"title":"Explicating conjugated polymer extraction used for the differentiation of single-walled carbon nanotubes","authors":"Dominik Just, Tomasz Wasiak, Andrzej Dzienia, Karolina Z. Milowska, Anna Mielańczyk, Dawid Janas","doi":"10.1039/d4nh00427b","DOIUrl":null,"url":null,"abstract":"Single-walled carbon nanotubes (SWCNTs) are synthesized as mixtures of various SWCNT types, exhibiting drastically different properties, and thereby making the material of limited use. Fluorene-based polymers are successful agents for purifying such blends by means of conjugated polymer extraction (CPE), greatly increasing their application potential. However, a limited number of studies have devoted attention to understanding the effects of the polyfluorene backbone and side chain structure on the selectivity and separation efficiency of SWCNTs. Regarding the impact of the polymer backbone, it was noted that the ability to extract SWCNTs with conjugated polymers could be significantly enhanced by using fluorene-based copolymers that exhibit dramatically different interactions with SWCNTs depending on the types of monomers combined. However, the role of monomer side chains remains much less explored, and the knowledge generated so far is fragmentary. Herein, we present a new approach to tailor polymer selectivity by creating copolymers of polyfluorene bearing mixed-length alkyl chains. Their thorough and systematic analysis by experiments and modeling revealed considerable insight into the impact of the attached functional groups on the capacity of conjugated polymers for the purification of SWCNTs. Interestingly, the obtained results contradict the generally accepted conclusion that polyfluorene-based polymers and copolymers with longer chains always prefer SWCNTs of larger diameters. Besides that, we report that the capacity of such polymers for sorting SWCNTs may be considerably enhanced using specific low molecular weight compounds. The carried-out research provides considerable insight into the behavior of polymers and carbon-based materials at the nanoscale.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00427b","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-walled carbon nanotubes (SWCNTs) are synthesized as mixtures of various SWCNT types, exhibiting drastically different properties, and thereby making the material of limited use. Fluorene-based polymers are successful agents for purifying such blends by means of conjugated polymer extraction (CPE), greatly increasing their application potential. However, a limited number of studies have devoted attention to understanding the effects of the polyfluorene backbone and side chain structure on the selectivity and separation efficiency of SWCNTs. Regarding the impact of the polymer backbone, it was noted that the ability to extract SWCNTs with conjugated polymers could be significantly enhanced by using fluorene-based copolymers that exhibit dramatically different interactions with SWCNTs depending on the types of monomers combined. However, the role of monomer side chains remains much less explored, and the knowledge generated so far is fragmentary. Herein, we present a new approach to tailor polymer selectivity by creating copolymers of polyfluorene bearing mixed-length alkyl chains. Their thorough and systematic analysis by experiments and modeling revealed considerable insight into the impact of the attached functional groups on the capacity of conjugated polymers for the purification of SWCNTs. Interestingly, the obtained results contradict the generally accepted conclusion that polyfluorene-based polymers and copolymers with longer chains always prefer SWCNTs of larger diameters. Besides that, we report that the capacity of such polymers for sorting SWCNTs may be considerably enhanced using specific low molecular weight compounds. The carried-out research provides considerable insight into the behavior of polymers and carbon-based materials at the nanoscale.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture