Enrico Bothmann, Taylor Childers, Walter Giele, Stefan Höche, Joshua Isaacson, Max Knobbe
{"title":"A portable parton-level event generator for the high-luminosity LHC","authors":"Enrico Bothmann, Taylor Childers, Walter Giele, Stefan Höche, Joshua Isaacson, Max Knobbe","doi":"10.21468/scipostphys.17.3.081","DOIUrl":null,"url":null,"abstract":"The rapid deployment of computing hardware different from the traditional CPU+RAM model in data centers around the world mandates a change in the design of event generators for the Large Hadron Collider, in order to provide economically and ecologically sustainable simulations for the high-luminosity era of the LHC. Parton-level event generation is one of the most computationally demanding parts of the simulation and is therefore a prime target for improvements. We present a production-ready leading-order parton-level event generation framework capable of utilizing most modern hardware and discuss its performance in the standard candle processes of vector boson and top-quark pair production with up to five additional jets.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"34 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.3.081","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid deployment of computing hardware different from the traditional CPU+RAM model in data centers around the world mandates a change in the design of event generators for the Large Hadron Collider, in order to provide economically and ecologically sustainable simulations for the high-luminosity era of the LHC. Parton-level event generation is one of the most computationally demanding parts of the simulation and is therefore a prime target for improvements. We present a production-ready leading-order parton-level event generation framework capable of utilizing most modern hardware and discuss its performance in the standard candle processes of vector boson and top-quark pair production with up to five additional jets.