Kullback-Leibler cluster entropy to quantify volatility correlation and risk diversity

L. Ponta, A. Carbone
{"title":"Kullback-Leibler cluster entropy to quantify volatility correlation and risk diversity","authors":"L. Ponta, A. Carbone","doi":"arxiv-2409.10543","DOIUrl":null,"url":null,"abstract":"The Kullback-Leibler cluster entropy $\\mathcal{D_{C}}[P \\| Q] $ is evaluated\nfor the empirical and model probability distributions $P$ and $Q$ of the\nclusters formed in the realized volatility time series of five assets (SP\\&500,\nNASDAQ, DJIA, DAX, FTSEMIB). The Kullback-Leibler functional $\\mathcal{D_{C}}[P\n\\| Q] $ provides complementary perspectives about the stochastic volatility\nprocess compared to the Shannon functional $\\mathcal{S_{C}}[P]$. While\n$\\mathcal{D_{C}}[P \\| Q] $ is maximum at the short time scales,\n$\\mathcal{S_{C}}[P]$ is maximum at the large time scales leading to\ncomplementary optimization criteria tracing back respectively to the maximum\nand minimum relative entropy evolution principles. The realized volatility is\nmodelled as a time-dependent fractional stochastic process characterized by\npower-law decaying distributions with positive correlation ($H>1/2$). As a case\nstudy, a multiperiod portfolio built on diversity indexes derived from the\nKullback-Leibler entropy measure of the realized volatility. The portfolio is\nrobust and exhibits better performances over the horizon periods. A comparison\nwith the portfolio built either according to the uniform distribution or in the\nframework of the Markowitz theory is also reported.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Kullback-Leibler cluster entropy $\mathcal{D_{C}}[P \| Q] $ is evaluated for the empirical and model probability distributions $P$ and $Q$ of the clusters formed in the realized volatility time series of five assets (SP\&500, NASDAQ, DJIA, DAX, FTSEMIB). The Kullback-Leibler functional $\mathcal{D_{C}}[P \| Q] $ provides complementary perspectives about the stochastic volatility process compared to the Shannon functional $\mathcal{S_{C}}[P]$. While $\mathcal{D_{C}}[P \| Q] $ is maximum at the short time scales, $\mathcal{S_{C}}[P]$ is maximum at the large time scales leading to complementary optimization criteria tracing back respectively to the maximum and minimum relative entropy evolution principles. The realized volatility is modelled as a time-dependent fractional stochastic process characterized by power-law decaying distributions with positive correlation ($H>1/2$). As a case study, a multiperiod portfolio built on diversity indexes derived from the Kullback-Leibler entropy measure of the realized volatility. The portfolio is robust and exhibits better performances over the horizon periods. A comparison with the portfolio built either according to the uniform distribution or in the framework of the Markowitz theory is also reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
库尔巴克-莱伯勒聚类熵量化波动相关性和风险多样性
针对五种资产(SP/&500、NASDAQ、DJIA、DAX、FTSEMIB)的已实现波动率时间序列中形成的簇的经验和模型概率分布 $P$ 和 $Q$,评估了库尔巴克-莱布勒簇熵 $\mathcal{D_{C}}[P \| Q] $。与香农函数 $\mathcal{S_{C}}[P]$ 相比,Kullback-Leibler 函数 $\mathcal{D_{C}}[P\| Q] $ 为随机波动过程提供了互补的视角。虽然 $\mathcal{D_{C}}[P \| Q] $ 在短时间尺度上是最大的,$\mathcal{S_{C}}[P]$ 在大时间尺度上是最大的,从而导致互补的优化标准分别追溯到最大和最小相对熵演化原理。已实现的波动率被模拟为一个随时间变化的分数随机过程,其特征是具有正相关性的幂律衰减分布($H>1/2$)。作为案例研究,一个多周期投资组合建立在从已实现波动率的库尔巴克-莱伯勒熵度量得出的多样性指数上。该投资组合是稳健的,并且在各期限内表现较好。报告还比较了根据均匀分布或马科维茨理论框架建立的投资组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macroscopic properties of equity markets: stylized facts and portfolio performance Tuning into Climate Risks: Extracting Innovation from TV News for Clean Energy Firms On the macroeconomic fundamentals of long-term volatilities and dynamic correlations in COMEX copper futures Market information of the fractional stochastic regularity model Critical Dynamics of Random Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1