Assessing differential cell composition in single-cell studies using voomCLR

Alemu Takele Assefa, Bie Verbist, Koen Van den Berge
{"title":"Assessing differential cell composition in single-cell studies using voomCLR","authors":"Alemu Takele Assefa, Bie Verbist, Koen Van den Berge","doi":"10.1101/2024.09.12.612645","DOIUrl":null,"url":null,"abstract":"In single-cell studies, a common question is whether there is a change in cell composition between conditions. While ideally, one needs absolute cell counts (number of cells per volumetric unit in a sample) to address these questions, current experimentation typically obtains cell counts that only carry relative information. It is therefore crucial to account for the compositional nature of cell count data in the statistical analysis. While recently developed methods address compositionality using compositional transformations together with a bias correction, they do not account for the uncertainty involved in estimation of the bias term, nor do they accommodate the mean-variance structure of the counts. Here, we introduce a statistical method, voomCLR, for assessing differences in cell composition between conditions incorporating both uncertainty on the bias term as well as acknowledging the mean-variance structure of the transformed data, by leveraging developments from the differential gene expression literature. We demonstrate the performances of voomCLR, illustrate the benefit of all components and compare the methodology to the state-of-the-art on simulated and real single-cell gene expression datasets.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In single-cell studies, a common question is whether there is a change in cell composition between conditions. While ideally, one needs absolute cell counts (number of cells per volumetric unit in a sample) to address these questions, current experimentation typically obtains cell counts that only carry relative information. It is therefore crucial to account for the compositional nature of cell count data in the statistical analysis. While recently developed methods address compositionality using compositional transformations together with a bias correction, they do not account for the uncertainty involved in estimation of the bias term, nor do they accommodate the mean-variance structure of the counts. Here, we introduce a statistical method, voomCLR, for assessing differences in cell composition between conditions incorporating both uncertainty on the bias term as well as acknowledging the mean-variance structure of the transformed data, by leveraging developments from the differential gene expression literature. We demonstrate the performances of voomCLR, illustrate the benefit of all components and compare the methodology to the state-of-the-art on simulated and real single-cell gene expression datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 voomCLR 评估单细胞研究中的细胞组成差异
在单细胞研究中,一个常见的问题是不同条件下细胞组成是否发生变化。理想情况下,我们需要绝对的细胞计数(样本中每容积单位的细胞数)来解决这些问题,但目前的实验通常只能获得相对信息的细胞计数。因此,在统计分析中考虑细胞计数数据的组成性质至关重要。虽然最近开发的方法利用组成变换和偏差校正来解决组成性问题,但这些方法没有考虑偏差项估算中的不确定性,也没有考虑计数的均方差结构。在这里,我们介绍一种统计方法--voomCLR,用于评估不同条件下细胞组成的差异,这种方法既考虑了偏倚项的不确定性,也承认了转换数据的均方差结构,并充分利用了差异基因表达文献的发展成果。我们展示了 voomCLR 的性能,说明了所有组件的益处,并在模拟和真实单细胞基因表达数据集上将该方法与最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECSFinder: Optimized prediction of evolutionarily conserved RNA secondary structures from genome sequences GeneSpectra: a method for context-aware comparison of cell type gene expression across species A Bioinformatician, Computer Scientist, and Geneticist lead bioinformatic tool development - which one is better? Interpretable high-resolution dimension reduction of spatial transcriptomics data by DeepFuseNMF Pangenomics to understand prophage dynamics in the Pectobacterium genus and the radiating lineages of P. brasiliense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1