{"title":"The rigidity of minimal Legendrian submanifolds in the Euclidean spheres via eigenvalues of fundamental matrices","authors":"Pei-Yi Wu, Ling Yang","doi":"10.1007/s00526-024-02822-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the rigidity problem for compact minimal Legendrian submanifolds in the unit Euclidean spheres via eigenvalues of fundamental matrices, which measure the squared norms of the second fundamental form on all normal directions. By using Lu’s inequality (Lu in J Funct Anal 261:1284–1308, 2011) on the upper bound of the squared norm of Lie brackets of symmetric matrices, we establish an optimal pinching theorem for such submanifolds of all dimensions, giving a new characterization for the Calabi tori. This pinching condition can also be described by the eigenvalues of the Ricci curvature tensor. Moreover, when the third large eigenvalue of the fundamental matrix vanishes everywhere, we get an optimal rigidity theorem under a weaker pinching condition.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02822-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the rigidity problem for compact minimal Legendrian submanifolds in the unit Euclidean spheres via eigenvalues of fundamental matrices, which measure the squared norms of the second fundamental form on all normal directions. By using Lu’s inequality (Lu in J Funct Anal 261:1284–1308, 2011) on the upper bound of the squared norm of Lie brackets of symmetric matrices, we establish an optimal pinching theorem for such submanifolds of all dimensions, giving a new characterization for the Calabi tori. This pinching condition can also be described by the eigenvalues of the Ricci curvature tensor. Moreover, when the third large eigenvalue of the fundamental matrix vanishes everywhere, we get an optimal rigidity theorem under a weaker pinching condition.