A. V. Meleshkin, A. K. Sagidullin, S. Y. Misyura, V. S. Morozov, N. V. Marasanov, V. V. Glezer, M. Sh. Madygulov, M. T. Mito
{"title":"Phase Equilibrium for Hydrofluorocarbon R134a Hydrate. Hydrate-Based Desalination of NaCl Salt Solution","authors":"A. V. Meleshkin, A. K. Sagidullin, S. Y. Misyura, V. S. Morozov, N. V. Marasanov, V. V. Glezer, M. Sh. Madygulov, M. T. Mito","doi":"10.1134/S1810232824030172","DOIUrl":null,"url":null,"abstract":"<p>Experimental dependences (pressure-temperature) of phase equilibrium of hydrofluorocarbon R134a hydrate have been obtained in aqueous solution of the NaCl salt. The measurements were carried out at a salt concentration in water of 3.25 wt. % in the pressure range from 0.5 to 2.5 bar at temperatures varying from −3 to 10°C. In contrast with the pure water system, the presence of salt in the solution had an inhibitory effect. The equilibrium temperature on the equilibrium curve of R134a hydrate at a set pressure decreased by 12–25%, unlike the temperature for the system with pure water. Combined washing process followed by centrifugation decreased the mass concentration of the salt in the solution by 92% compared to the initial salt concentration.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 3","pages":"652 - 662"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824030172","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental dependences (pressure-temperature) of phase equilibrium of hydrofluorocarbon R134a hydrate have been obtained in aqueous solution of the NaCl salt. The measurements were carried out at a salt concentration in water of 3.25 wt. % in the pressure range from 0.5 to 2.5 bar at temperatures varying from −3 to 10°C. In contrast with the pure water system, the presence of salt in the solution had an inhibitory effect. The equilibrium temperature on the equilibrium curve of R134a hydrate at a set pressure decreased by 12–25%, unlike the temperature for the system with pure water. Combined washing process followed by centrifugation decreased the mass concentration of the salt in the solution by 92% compared to the initial salt concentration.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.