Escaping the drug-bias trap: using debiasing design to improve interpretability and generalization of drug-target interaction prediction

Pei-Dong Zhang, Jianzhu Ma, Ting Chen
{"title":"Escaping the drug-bias trap: using debiasing design to improve interpretability and generalization of drug-target interaction prediction","authors":"Pei-Dong Zhang, Jianzhu Ma, Ting Chen","doi":"10.1101/2024.09.12.612771","DOIUrl":null,"url":null,"abstract":"Considering the high cost associated with determining reaction affinities through in-vitro experiments, virtual screening of potential drugs bound with specific protein pockets from vast compounds is critical in AI-assisted drug discovery. Deep-leaning approaches have been proposed for Drug-Target Interaction (DTI) prediction. However, they have shown overestimated accuracy because of the drug-bias trap, a challenge that results from excessive reliance on the drug branch in the traditional drug-protein dual-branch network approach. This casts doubt on the interpretability and generalizability of existing Drug-Target Interaction (DTI) models. Therefore, we introduce UdanDTI, an innovative deep-learning architecture designed specifically for predicting drug-protein interactions. UdanDTI applies an unbalanced dual-branch system and an attentive aggregation module to enhance interpretability from a biological perspective. Across various public datasets, UdanDTI demonstrates outstanding performance, outperforming state-of-the-art models under in-domain, cross-domain, and structural interpretability settings. Notably, it demonstrates exceptional accuracy in predicting drug responses of two crucial subgroups of Epidermal Growth Factor Receptor (EGFR) mutations associated with non-small cell lung cancer, consistent with experimental results. Meanwhile, UdanDTI could complement the advanced molecular docking software DiffDock. The codes and datasets of UdanDTI are available at https://github.com/CQ-zhang-2016/UdanDTI.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the high cost associated with determining reaction affinities through in-vitro experiments, virtual screening of potential drugs bound with specific protein pockets from vast compounds is critical in AI-assisted drug discovery. Deep-leaning approaches have been proposed for Drug-Target Interaction (DTI) prediction. However, they have shown overestimated accuracy because of the drug-bias trap, a challenge that results from excessive reliance on the drug branch in the traditional drug-protein dual-branch network approach. This casts doubt on the interpretability and generalizability of existing Drug-Target Interaction (DTI) models. Therefore, we introduce UdanDTI, an innovative deep-learning architecture designed specifically for predicting drug-protein interactions. UdanDTI applies an unbalanced dual-branch system and an attentive aggregation module to enhance interpretability from a biological perspective. Across various public datasets, UdanDTI demonstrates outstanding performance, outperforming state-of-the-art models under in-domain, cross-domain, and structural interpretability settings. Notably, it demonstrates exceptional accuracy in predicting drug responses of two crucial subgroups of Epidermal Growth Factor Receptor (EGFR) mutations associated with non-small cell lung cancer, consistent with experimental results. Meanwhile, UdanDTI could complement the advanced molecular docking software DiffDock. The codes and datasets of UdanDTI are available at https://github.com/CQ-zhang-2016/UdanDTI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
摆脱药物偏倚陷阱:利用去杂设计提高药物-靶点相互作用预测的可解释性和通用性
考虑到通过体外实验确定反应亲和力的成本较高,从大量化合物中虚拟筛选出与特定蛋白质口袋结合的潜在药物对于人工智能辅助药物发现至关重要。有人提出了用于药物-靶点相互作用(DTI)预测的深度倾斜方法。然而,由于传统的药物-蛋白质双分支网络方法过度依赖药物分支而导致的药物偏倚陷阱(drug-bias trap),这些方法的准确性被高估了。这使人们对现有药物-靶点相互作用(DTI)模型的可解释性和可推广性产生了怀疑。因此,我们引入了 UdanDTI,这是一种专为预测药物-蛋白质相互作用而设计的创新型深度学习架构。UdanDTI 采用不平衡双分支系统和贴心的聚合模块,从生物学角度提高了可解释性。在各种公共数据集上,UdanDTI 都表现出了卓越的性能,在域内、跨域和结构可解释性设置下都优于最先进的模型。值得注意的是,它在预测与非小细胞肺癌相关的表皮生长因子受体(EGFR)突变的两个关键亚组的药物反应方面表现出了极高的准确性,这与实验结果是一致的。同时,UdanDTI 可以与先进的分子对接软件 DiffDock 相辅相成。UdanDTI的代码和数据集可在https://github.com/CQ-zhang-2016/UdanDTI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECSFinder: Optimized prediction of evolutionarily conserved RNA secondary structures from genome sequences GeneSpectra: a method for context-aware comparison of cell type gene expression across species A Bioinformatician, Computer Scientist, and Geneticist lead bioinformatic tool development - which one is better? Interpretable high-resolution dimension reduction of spatial transcriptomics data by DeepFuseNMF Pangenomics to understand prophage dynamics in the Pectobacterium genus and the radiating lineages of P. brasiliense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1