Seon Hui Baek, Seung Jae Kim, Ho Seok Heo, Kangtaek Lee
{"title":"Improving Quantum Dot Stability Against Heat and Moisture with Cyclic Olefin Copolymer Matrix","authors":"Seon Hui Baek, Seung Jae Kim, Ho Seok Heo, Kangtaek Lee","doi":"10.1007/s11814-024-00278-z","DOIUrl":null,"url":null,"abstract":"<p>Quantum dots (QDs) are widely studied for their superior optical properties. However, maintaining their stability requires effective protection against heat and moisture. This research aims to enhance the stability of QDs by embedding them in cyclic olefin copolymer (COC). Our findings show that nanocomposites containing green- and red-emitting QDs in COC exhibited enhanced transparency and dispersion when compared to those using other common polymers, such as polydimethylsiloxane (PDMS) and poly(methyl methacrylate) (PMMA). Stability test under harsh conditions (85 °C and 85% relative humidity) confirmed the robustness of the QDs within the COC matrix compared to the PDMS and PMMA matrices. In addition, a white-light-emitting diode (LED) device was successfully fabricated by integrating a blend of green- and red-emitting QDs in COC-based nanocomposites atop a blue LED chip. This setup demonstrated potential for use in light-emitting devices that demand high luminous efficiency and transparency, even under extreme conditions. The study highlights the potential of COC as an alternative to traditional polymers, enhancing the performance and durability in display technologies.</p>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11814-024-00278-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum dots (QDs) are widely studied for their superior optical properties. However, maintaining their stability requires effective protection against heat and moisture. This research aims to enhance the stability of QDs by embedding them in cyclic olefin copolymer (COC). Our findings show that nanocomposites containing green- and red-emitting QDs in COC exhibited enhanced transparency and dispersion when compared to those using other common polymers, such as polydimethylsiloxane (PDMS) and poly(methyl methacrylate) (PMMA). Stability test under harsh conditions (85 °C and 85% relative humidity) confirmed the robustness of the QDs within the COC matrix compared to the PDMS and PMMA matrices. In addition, a white-light-emitting diode (LED) device was successfully fabricated by integrating a blend of green- and red-emitting QDs in COC-based nanocomposites atop a blue LED chip. This setup demonstrated potential for use in light-emitting devices that demand high luminous efficiency and transparency, even under extreme conditions. The study highlights the potential of COC as an alternative to traditional polymers, enhancing the performance and durability in display technologies.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.