SpheriGait: Enriching Spatial Representation via Spherical Projection for LiDAR-based Gait Recognition

Yanxi Wang, Zhigang Chang, Chen Wu, Zihao Cheng, Hongmin Gao
{"title":"SpheriGait: Enriching Spatial Representation via Spherical Projection for LiDAR-based Gait Recognition","authors":"Yanxi Wang, Zhigang Chang, Chen Wu, Zihao Cheng, Hongmin Gao","doi":"arxiv-2409.11869","DOIUrl":null,"url":null,"abstract":"Gait recognition is a rapidly progressing technique for the remote\nidentification of individuals. Prior research predominantly employing 2D\nsensors to gather gait data has achieved notable advancements; nonetheless,\nthey have unavoidably neglected the influence of 3D dynamic characteristics on\nrecognition. Gait recognition utilizing LiDAR 3D point clouds not only directly\ncaptures 3D spatial features but also diminishes the impact of lighting\nconditions while ensuring privacy protection.The essence of the problem lies in\nhow to effectively extract discriminative 3D dynamic representation from point\nclouds.In this paper, we proposes a method named SpheriGait for extracting and\nenhancing dynamic features from point clouds for Lidar-based gait recognition.\nSpecifically, it substitutes the conventional point cloud plane projection\nmethod with spherical projection to augment the perception of dynamic\nfeature.Additionally, a network block named DAM-L is proposed to extract gait\ncues from the projected point cloud data. We conducted extensive experiments\nand the results demonstrated the SpheriGait achieved state-of-the-art\nperformance on the SUSTech1K dataset, and verified that the spherical\nprojection method can serve as a universal data preprocessing technique to\nenhance the performance of other LiDAR-based gait recognition methods,\nexhibiting exceptional flexibility and practicality.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gait recognition is a rapidly progressing technique for the remote identification of individuals. Prior research predominantly employing 2D sensors to gather gait data has achieved notable advancements; nonetheless, they have unavoidably neglected the influence of 3D dynamic characteristics on recognition. Gait recognition utilizing LiDAR 3D point clouds not only directly captures 3D spatial features but also diminishes the impact of lighting conditions while ensuring privacy protection.The essence of the problem lies in how to effectively extract discriminative 3D dynamic representation from point clouds.In this paper, we proposes a method named SpheriGait for extracting and enhancing dynamic features from point clouds for Lidar-based gait recognition. Specifically, it substitutes the conventional point cloud plane projection method with spherical projection to augment the perception of dynamic feature.Additionally, a network block named DAM-L is proposed to extract gait cues from the projected point cloud data. We conducted extensive experiments and the results demonstrated the SpheriGait achieved state-of-the-art performance on the SUSTech1K dataset, and verified that the spherical projection method can serve as a universal data preprocessing technique to enhance the performance of other LiDAR-based gait recognition methods, exhibiting exceptional flexibility and practicality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SpheriGait:通过基于激光雷达的步态识别的球面投影丰富空间表示
步态识别是一项进展迅速的个人远程识别技术。之前的研究主要采用二维传感器来收集步态数据,取得了显著的进步,但不可避免地忽视了三维动态特征对识别的影响。利用激光雷达三维点云进行步态识别不仅能直接捕捉三维空间特征,还能减少光照条件的影响,同时确保隐私保护。本文提出了一种名为 SpheriGait 的方法,用于从点云中提取和增强动态特征,以实现基于激光雷达的步态识别。具体来说,该方法用球面投影取代了传统的点云平面投影法,以增强对动态特征的感知。我们进行了大量的实验,结果表明 SpheriGait 在 SUSTech1K 数据集上取得了最先进的性能,并验证了球面投影方法可以作为一种通用的数据预处理技术来提高其他基于激光雷达的步态识别方法的性能,表现出了非凡的灵活性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1